This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dip0r.1 | |- X = ( BaseSet ` U ) |
|
| dip0r.5 | |- Z = ( 0vec ` U ) |
||
| dip0r.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | dip0r | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A P Z ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dip0r.1 | |- X = ( BaseSet ` U ) |
|
| 2 | dip0r.5 | |- Z = ( 0vec ` U ) |
|
| 3 | dip0r.7 | |- P = ( .iOLD ` U ) |
|
| 4 | 1 2 | nvzcl | |- ( U e. NrmCVec -> Z e. X ) |
| 5 | 4 | adantr | |- ( ( U e. NrmCVec /\ A e. X ) -> Z e. X ) |
| 6 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 7 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 8 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 9 | 1 6 7 8 3 | ipval2 | |- ( ( U e. NrmCVec /\ A e. X /\ Z e. X ) -> ( A P Z ) = ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 10 | 5 9 | mpd3an3 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A P Z ) = ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 11 | neg1cn | |- -u 1 e. CC |
|
| 12 | 7 2 | nvsz | |- ( ( U e. NrmCVec /\ -u 1 e. CC ) -> ( -u 1 ( .sOLD ` U ) Z ) = Z ) |
| 13 | 11 12 | mpan2 | |- ( U e. NrmCVec -> ( -u 1 ( .sOLD ` U ) Z ) = Z ) |
| 14 | 13 | adantr | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 ( .sOLD ` U ) Z ) = Z ) |
| 15 | 14 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) = ( A ( +v ` U ) Z ) ) |
| 16 | 15 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) = ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ) |
| 17 | 16 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) = ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) ) |
| 18 | 17 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) = ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) ) ) |
| 19 | 1 6 7 8 3 | ipval2lem3 | |- ( ( U e. NrmCVec /\ A e. X /\ Z e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) e. RR ) |
| 20 | 5 19 | mpd3an3 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) e. RR ) |
| 21 | 20 | recnd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) e. CC ) |
| 22 | 21 | subidd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) ) = 0 ) |
| 23 | 18 22 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) = 0 ) |
| 24 | negicn | |- -u _i e. CC |
|
| 25 | 7 2 | nvsz | |- ( ( U e. NrmCVec /\ -u _i e. CC ) -> ( -u _i ( .sOLD ` U ) Z ) = Z ) |
| 26 | 24 25 | mpan2 | |- ( U e. NrmCVec -> ( -u _i ( .sOLD ` U ) Z ) = Z ) |
| 27 | ax-icn | |- _i e. CC |
|
| 28 | 7 2 | nvsz | |- ( ( U e. NrmCVec /\ _i e. CC ) -> ( _i ( .sOLD ` U ) Z ) = Z ) |
| 29 | 27 28 | mpan2 | |- ( U e. NrmCVec -> ( _i ( .sOLD ` U ) Z ) = Z ) |
| 30 | 26 29 | eqtr4d | |- ( U e. NrmCVec -> ( -u _i ( .sOLD ` U ) Z ) = ( _i ( .sOLD ` U ) Z ) ) |
| 31 | 30 | adantr | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u _i ( .sOLD ` U ) Z ) = ( _i ( .sOLD ` U ) Z ) ) |
| 32 | 31 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) = ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) |
| 33 | 32 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) = ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ) |
| 34 | 33 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) = ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) |
| 35 | 34 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) = ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) |
| 36 | 1 6 7 8 3 | ipval2lem4 | |- ( ( ( U e. NrmCVec /\ A e. X /\ Z e. X ) /\ _i e. CC ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) e. CC ) |
| 37 | 27 36 | mpan2 | |- ( ( U e. NrmCVec /\ A e. X /\ Z e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) e. CC ) |
| 38 | 5 37 | mpd3an3 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) e. CC ) |
| 39 | 38 | subidd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) = 0 ) |
| 40 | 35 39 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) = 0 ) |
| 41 | 40 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) = ( _i x. 0 ) ) |
| 42 | 23 41 | oveq12d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) ) = ( 0 + ( _i x. 0 ) ) ) |
| 43 | it0e0 | |- ( _i x. 0 ) = 0 |
|
| 44 | 43 | oveq2i | |- ( 0 + ( _i x. 0 ) ) = ( 0 + 0 ) |
| 45 | 00id | |- ( 0 + 0 ) = 0 |
|
| 46 | 44 45 | eqtri | |- ( 0 + ( _i x. 0 ) ) = 0 |
| 47 | 42 46 | eqtrdi | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) ) = 0 ) |
| 48 | 47 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) ) / 4 ) = ( 0 / 4 ) ) |
| 49 | 4cn | |- 4 e. CC |
|
| 50 | 4ne0 | |- 4 =/= 0 |
|
| 51 | 49 50 | div0i | |- ( 0 / 4 ) = 0 |
| 52 | 48 51 | eqtrdi | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) ) / 4 ) = 0 ) |
| 53 | 10 52 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A P Z ) = 0 ) |