This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex conjugate of an inner product reverses its arguments. Equation I1 of Ponnusamy p. 362. (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcl.1 | |- X = ( BaseSet ` U ) |
|
| ipcl.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | dipcj | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( * ` ( A P B ) ) = ( B P A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcl.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ipcl.7 | |- P = ( .iOLD ` U ) |
|
| 3 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 4 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 5 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 6 | 1 3 4 5 2 | ipval2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 7 | 6 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( * ` ( A P B ) ) = ( * ` ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) / 4 ) ) ) |
| 8 | 1 3 4 5 2 | ipval2 | |- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( B P A ) = ( ( ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) A ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 9 | 8 | 3com23 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( B P A ) = ( ( ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) A ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 10 | 1 3 4 5 2 | ipval2lem3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) e. RR ) |
| 11 | 10 | recnd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) e. CC ) |
| 12 | neg1cn | |- -u 1 e. CC |
|
| 13 | 1 3 4 5 2 | ipval2lem4 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ -u 1 e. CC ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) e. CC ) |
| 14 | 12 13 | mpan2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) e. CC ) |
| 15 | 11 14 | subcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC ) |
| 16 | ax-icn | |- _i e. CC |
|
| 17 | 1 3 4 5 2 | ipval2lem4 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ _i e. CC ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) e. CC ) |
| 18 | 16 17 | mpan2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) e. CC ) |
| 19 | negicn | |- -u _i e. CC |
|
| 20 | 1 3 4 5 2 | ipval2lem4 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ -u _i e. CC ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) e. CC ) |
| 21 | 19 20 | mpan2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) e. CC ) |
| 22 | 18 21 | subcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC ) |
| 23 | mulcl | |- ( ( _i e. CC /\ ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC ) -> ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) e. CC ) |
|
| 24 | 16 22 23 | sylancr | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) e. CC ) |
| 25 | 15 24 | addcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) e. CC ) |
| 26 | 4cn | |- 4 e. CC |
|
| 27 | 4ne0 | |- 4 =/= 0 |
|
| 28 | cjdiv | |- ( ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) e. CC /\ 4 e. CC /\ 4 =/= 0 ) -> ( * ` ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) / 4 ) ) = ( ( * ` ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) / ( * ` 4 ) ) ) |
|
| 29 | 26 27 28 | mp3an23 | |- ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) e. CC -> ( * ` ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) / 4 ) ) = ( ( * ` ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) / ( * ` 4 ) ) ) |
| 30 | 25 29 | syl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( * ` ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) / 4 ) ) = ( ( * ` ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) / ( * ` 4 ) ) ) |
| 31 | 4re | |- 4 e. RR |
|
| 32 | cjre | |- ( 4 e. RR -> ( * ` 4 ) = 4 ) |
|
| 33 | 31 32 | ax-mp | |- ( * ` 4 ) = 4 |
| 34 | 33 | oveq2i | |- ( ( * ` ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) / ( * ` 4 ) ) = ( ( * ` ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) / 4 ) |
| 35 | 1 3 4 5 2 | ipval2lem2 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ -u 1 e. CC ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) e. RR ) |
| 36 | 12 35 | mpan2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) e. RR ) |
| 37 | 10 36 | resubcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. RR ) |
| 38 | 1 3 4 5 2 | ipval2lem2 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ _i e. CC ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) e. RR ) |
| 39 | 16 38 | mpan2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) e. RR ) |
| 40 | 1 3 4 5 2 | ipval2lem2 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ -u _i e. CC ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) e. RR ) |
| 41 | 19 40 | mpan2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) e. RR ) |
| 42 | 39 41 | resubcld | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. RR ) |
| 43 | cjreim | |- ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. RR /\ ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. RR ) -> ( * ` ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) = ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) - ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) |
|
| 44 | 37 42 43 | syl2anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( * ` ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) = ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) - ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) |
| 45 | submul2 | |- ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC /\ _i e. CC /\ ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC ) -> ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) - ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) = ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. -u ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) |
|
| 46 | 16 45 | mp3an2 | |- ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC /\ ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC ) -> ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) - ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) = ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. -u ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) |
| 47 | 15 22 46 | syl2anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) - ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) = ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. -u ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) |
| 48 | 1 3 | nvcom | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A ( +v ` U ) B ) = ( B ( +v ` U ) A ) ) |
| 49 | 48 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) = ( ( normCV ` U ) ` ( B ( +v ` U ) A ) ) ) |
| 50 | 49 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) = ( ( ( normCV ` U ) ` ( B ( +v ` U ) A ) ) ^ 2 ) ) |
| 51 | 1 3 4 5 | nvdif | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) = ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ) |
| 52 | 51 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) = ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) |
| 53 | 50 52 | oveq12d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) = ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) A ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) |
| 54 | 18 21 | negsubdi2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> -u ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) = ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) |
| 55 | 1 3 4 5 | nvpi | |- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) = ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ) |
| 56 | 55 | 3com23 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) = ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ) |
| 57 | 56 | eqcomd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) = ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ) |
| 58 | 57 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) = ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) |
| 59 | 1 3 4 5 | nvpi | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) = ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ) |
| 60 | 59 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) = ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) |
| 61 | 58 60 | oveq12d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) = ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) |
| 62 | 54 61 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> -u ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) = ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) |
| 63 | 62 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i x. -u ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) = ( _i x. ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) |
| 64 | 53 63 | oveq12d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. -u ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) = ( ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) A ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) ) |
| 65 | 44 47 64 | 3eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( * ` ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) = ( ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) A ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) ) |
| 66 | 65 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( * ` ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) / 4 ) = ( ( ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) A ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 67 | 34 66 | eqtrid | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( * ` ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) ) / ( * ` 4 ) ) = ( ( ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) A ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 68 | 30 67 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( * ` ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) / 4 ) ) = ( ( ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) A ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( _i ( .sOLD ` U ) A ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( B ( +v ` U ) ( -u _i ( .sOLD ` U ) A ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 69 | 9 68 | eqtr4d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( B P A ) = ( * ` ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) B ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) B ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) B ) ) ) ^ 2 ) ) ) ) / 4 ) ) ) |
| 70 | 7 69 | eqtr4d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( * ` ( A P B ) ) = ( B P A ) ) |