This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem alrimdv

Description: Deduction form of Theorem 19.21 of Margaris p. 90. See 19.21 and 19.21v . (Contributed by NM, 10-Feb-1997)

Ref Expression
Hypothesis alrimdv.1
|- ( ph -> ( ps -> ch ) )
Assertion alrimdv
|- ( ph -> ( ps -> A. x ch ) )

Proof

Step Hyp Ref Expression
1 alrimdv.1
 |-  ( ph -> ( ps -> ch ) )
2 ax-5
 |-  ( ph -> A. x ph )
3 ax-5
 |-  ( ps -> A. x ps )
4 2 3 1 alrimdh
 |-  ( ph -> ( ps -> A. x ch ) )