This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 31-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| Assertion | rpnnen2lem4 | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> ( 0 <_ ( ( F ` A ) ` k ) /\ ( ( F ` A ) ` k ) <_ ( ( F ` B ) ` k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| 2 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 3 | 0re | |- 0 e. RR |
|
| 4 | 1re | |- 1 e. RR |
|
| 5 | 3nn | |- 3 e. NN |
|
| 6 | nndivre | |- ( ( 1 e. RR /\ 3 e. NN ) -> ( 1 / 3 ) e. RR ) |
|
| 7 | 4 5 6 | mp2an | |- ( 1 / 3 ) e. RR |
| 8 | 3re | |- 3 e. RR |
|
| 9 | 3pos | |- 0 < 3 |
|
| 10 | 8 9 | recgt0ii | |- 0 < ( 1 / 3 ) |
| 11 | 3 7 10 | ltleii | |- 0 <_ ( 1 / 3 ) |
| 12 | expge0 | |- ( ( ( 1 / 3 ) e. RR /\ k e. NN0 /\ 0 <_ ( 1 / 3 ) ) -> 0 <_ ( ( 1 / 3 ) ^ k ) ) |
|
| 13 | 7 12 | mp3an1 | |- ( ( k e. NN0 /\ 0 <_ ( 1 / 3 ) ) -> 0 <_ ( ( 1 / 3 ) ^ k ) ) |
| 14 | 2 11 13 | sylancl | |- ( k e. NN -> 0 <_ ( ( 1 / 3 ) ^ k ) ) |
| 15 | 14 | 3ad2ant3 | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> 0 <_ ( ( 1 / 3 ) ^ k ) ) |
| 16 | 0le0 | |- 0 <_ 0 |
|
| 17 | breq2 | |- ( ( ( 1 / 3 ) ^ k ) = if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) -> ( 0 <_ ( ( 1 / 3 ) ^ k ) <-> 0 <_ if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) ) ) |
|
| 18 | breq2 | |- ( 0 = if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) -> ( 0 <_ 0 <-> 0 <_ if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) ) ) |
|
| 19 | 17 18 | ifboth | |- ( ( 0 <_ ( ( 1 / 3 ) ^ k ) /\ 0 <_ 0 ) -> 0 <_ if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 20 | 15 16 19 | sylancl | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> 0 <_ if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 21 | sstr | |- ( ( A C_ B /\ B C_ NN ) -> A C_ NN ) |
|
| 22 | 1 | rpnnen2lem1 | |- ( ( A C_ NN /\ k e. NN ) -> ( ( F ` A ) ` k ) = if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 23 | 21 22 | stoic3 | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> ( ( F ` A ) ` k ) = if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 24 | 20 23 | breqtrrd | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> 0 <_ ( ( F ` A ) ` k ) ) |
| 25 | reexpcl | |- ( ( ( 1 / 3 ) e. RR /\ k e. NN0 ) -> ( ( 1 / 3 ) ^ k ) e. RR ) |
|
| 26 | 7 2 25 | sylancr | |- ( k e. NN -> ( ( 1 / 3 ) ^ k ) e. RR ) |
| 27 | 26 | 3ad2ant3 | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> ( ( 1 / 3 ) ^ k ) e. RR ) |
| 28 | 0red | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> 0 e. RR ) |
|
| 29 | simp1 | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> A C_ B ) |
|
| 30 | 29 | sseld | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> ( k e. A -> k e. B ) ) |
| 31 | ifle | |- ( ( ( ( ( 1 / 3 ) ^ k ) e. RR /\ 0 e. RR /\ 0 <_ ( ( 1 / 3 ) ^ k ) ) /\ ( k e. A -> k e. B ) ) -> if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) <_ if ( k e. B , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
|
| 32 | 27 28 15 30 31 | syl31anc | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> if ( k e. A , ( ( 1 / 3 ) ^ k ) , 0 ) <_ if ( k e. B , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 33 | 1 | rpnnen2lem1 | |- ( ( B C_ NN /\ k e. NN ) -> ( ( F ` B ) ` k ) = if ( k e. B , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 34 | 33 | 3adant1 | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> ( ( F ` B ) ` k ) = if ( k e. B , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 35 | 32 23 34 | 3brtr4d | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> ( ( F ` A ) ` k ) <_ ( ( F ` B ) ` k ) ) |
| 36 | 24 35 | jca | |- ( ( A C_ B /\ B C_ NN /\ k e. NN ) -> ( 0 <_ ( ( F ` A ) ` k ) /\ ( ( F ` A ) ` k ) <_ ( ( F ` B ) ` k ) ) ) |