This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer power is zero if and only if its base is zero. (Contributed by NM, 23-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expeq0 | |- ( ( A e. CC /\ N e. NN ) -> ( ( A ^ N ) = 0 <-> A = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( j = 1 -> ( A ^ j ) = ( A ^ 1 ) ) |
|
| 2 | 1 | eqeq1d | |- ( j = 1 -> ( ( A ^ j ) = 0 <-> ( A ^ 1 ) = 0 ) ) |
| 3 | 2 | bibi1d | |- ( j = 1 -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ 1 ) = 0 <-> A = 0 ) ) ) |
| 4 | 3 | imbi2d | |- ( j = 1 -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ 1 ) = 0 <-> A = 0 ) ) ) ) |
| 5 | oveq2 | |- ( j = k -> ( A ^ j ) = ( A ^ k ) ) |
|
| 6 | 5 | eqeq1d | |- ( j = k -> ( ( A ^ j ) = 0 <-> ( A ^ k ) = 0 ) ) |
| 7 | 6 | bibi1d | |- ( j = k -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ k ) = 0 <-> A = 0 ) ) ) |
| 8 | 7 | imbi2d | |- ( j = k -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ k ) = 0 <-> A = 0 ) ) ) ) |
| 9 | oveq2 | |- ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) |
|
| 10 | 9 | eqeq1d | |- ( j = ( k + 1 ) -> ( ( A ^ j ) = 0 <-> ( A ^ ( k + 1 ) ) = 0 ) ) |
| 11 | 10 | bibi1d | |- ( j = ( k + 1 ) -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) |
| 12 | 11 | imbi2d | |- ( j = ( k + 1 ) -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) ) |
| 13 | oveq2 | |- ( j = N -> ( A ^ j ) = ( A ^ N ) ) |
|
| 14 | 13 | eqeq1d | |- ( j = N -> ( ( A ^ j ) = 0 <-> ( A ^ N ) = 0 ) ) |
| 15 | 14 | bibi1d | |- ( j = N -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ N ) = 0 <-> A = 0 ) ) ) |
| 16 | 15 | imbi2d | |- ( j = N -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ N ) = 0 <-> A = 0 ) ) ) ) |
| 17 | exp1 | |- ( A e. CC -> ( A ^ 1 ) = A ) |
|
| 18 | 17 | eqeq1d | |- ( A e. CC -> ( ( A ^ 1 ) = 0 <-> A = 0 ) ) |
| 19 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 20 | expp1 | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
|
| 21 | 20 | eqeq1d | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> ( ( A ^ k ) x. A ) = 0 ) ) |
| 22 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 23 | simpl | |- ( ( A e. CC /\ k e. NN0 ) -> A e. CC ) |
|
| 24 | 22 23 | mul0ord | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( ( A ^ k ) x. A ) = 0 <-> ( ( A ^ k ) = 0 \/ A = 0 ) ) ) |
| 25 | 21 24 | bitrd | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> ( ( A ^ k ) = 0 \/ A = 0 ) ) ) |
| 26 | 19 25 | sylan2 | |- ( ( A e. CC /\ k e. NN ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> ( ( A ^ k ) = 0 \/ A = 0 ) ) ) |
| 27 | biimp | |- ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( A ^ k ) = 0 -> A = 0 ) ) |
|
| 28 | idd | |- ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( A = 0 -> A = 0 ) ) |
|
| 29 | 27 28 | jaod | |- ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( ( A ^ k ) = 0 \/ A = 0 ) -> A = 0 ) ) |
| 30 | olc | |- ( A = 0 -> ( ( A ^ k ) = 0 \/ A = 0 ) ) |
|
| 31 | 29 30 | impbid1 | |- ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( ( A ^ k ) = 0 \/ A = 0 ) <-> A = 0 ) ) |
| 32 | 26 31 | sylan9bb | |- ( ( ( A e. CC /\ k e. NN ) /\ ( ( A ^ k ) = 0 <-> A = 0 ) ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) |
| 33 | 32 | exp31 | |- ( A e. CC -> ( k e. NN -> ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) ) |
| 34 | 33 | com12 | |- ( k e. NN -> ( A e. CC -> ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) ) |
| 35 | 34 | a2d | |- ( k e. NN -> ( ( A e. CC -> ( ( A ^ k ) = 0 <-> A = 0 ) ) -> ( A e. CC -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) ) |
| 36 | 4 8 12 16 18 35 | nnind | |- ( N e. NN -> ( A e. CC -> ( ( A ^ N ) = 0 <-> A = 0 ) ) ) |
| 37 | 36 | impcom | |- ( ( A e. CC /\ N e. NN ) -> ( ( A ^ N ) = 0 <-> A = 0 ) ) |