This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iddvdsexp | |- ( ( M e. ZZ /\ N e. NN ) -> M || ( M ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 2 | zexpcl | |- ( ( M e. ZZ /\ ( N - 1 ) e. NN0 ) -> ( M ^ ( N - 1 ) ) e. ZZ ) |
|
| 3 | 1 2 | sylan2 | |- ( ( M e. ZZ /\ N e. NN ) -> ( M ^ ( N - 1 ) ) e. ZZ ) |
| 4 | simpl | |- ( ( M e. ZZ /\ N e. NN ) -> M e. ZZ ) |
|
| 5 | dvdsmul2 | |- ( ( ( M ^ ( N - 1 ) ) e. ZZ /\ M e. ZZ ) -> M || ( ( M ^ ( N - 1 ) ) x. M ) ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ( M e. ZZ /\ N e. NN ) -> M || ( ( M ^ ( N - 1 ) ) x. M ) ) |
| 7 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 8 | expm1t | |- ( ( M e. CC /\ N e. NN ) -> ( M ^ N ) = ( ( M ^ ( N - 1 ) ) x. M ) ) |
|
| 9 | 7 8 | sylan | |- ( ( M e. ZZ /\ N e. NN ) -> ( M ^ N ) = ( ( M ^ ( N - 1 ) ) x. M ) ) |
| 10 | 6 9 | breqtrrd | |- ( ( M e. ZZ /\ N e. NN ) -> M || ( M ^ N ) ) |