This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is a ring unity of the non-unital ring. (Contributed by AV, 27-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngisom1.1 | |- .1. = ( 1r ` R ) |
|
| rngisom1.b | |- B = ( Base ` S ) |
||
| rngisom1.t | |- .x. = ( .r ` S ) |
||
| Assertion | rngisom1 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> A. x e. B ( ( ( F ` .1. ) .x. x ) = x /\ ( x .x. ( F ` .1. ) ) = x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngisom1.1 | |- .1. = ( 1r ` R ) |
|
| 2 | rngisom1.b | |- B = ( Base ` S ) |
|
| 3 | rngisom1.t | |- .x. = ( .r ` S ) |
|
| 4 | rngimcnv | |- ( F e. ( R RngIso S ) -> `' F e. ( S RngIso R ) ) |
|
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 2 5 | rngimrnghm | |- ( `' F e. ( S RngIso R ) -> `' F e. ( S RngHom R ) ) |
| 7 | 4 6 | syl | |- ( F e. ( R RngIso S ) -> `' F e. ( S RngHom R ) ) |
| 8 | 7 | 3ad2ant3 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> `' F e. ( S RngHom R ) ) |
| 9 | 8 | adantr | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> `' F e. ( S RngHom R ) ) |
| 10 | 1 2 | rngisomfv1 | |- ( ( R e. Ring /\ F e. ( R RngIso S ) ) -> ( F ` .1. ) e. B ) |
| 11 | 10 | 3adant2 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( F ` .1. ) e. B ) |
| 12 | 11 | adantr | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` .1. ) e. B ) |
| 13 | simpr | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> x e. B ) |
|
| 14 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 15 | 2 3 14 | rnghmmul | |- ( ( `' F e. ( S RngHom R ) /\ ( F ` .1. ) e. B /\ x e. B ) -> ( `' F ` ( ( F ` .1. ) .x. x ) ) = ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) ) |
| 16 | 9 12 13 15 | syl3anc | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( `' F ` ( ( F ` .1. ) .x. x ) ) = ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) ) |
| 17 | 16 | fveq2d | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( `' F ` ( ( F ` .1. ) .x. x ) ) ) = ( F ` ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) ) ) |
| 18 | 5 2 | rngimf1o | |- ( F e. ( R RngIso S ) -> F : ( Base ` R ) -1-1-onto-> B ) |
| 19 | 18 | 3ad2ant3 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> F : ( Base ` R ) -1-1-onto-> B ) |
| 20 | simpl2 | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> S e. Rng ) |
|
| 21 | 2 3 | rngcl | |- ( ( S e. Rng /\ ( F ` .1. ) e. B /\ x e. B ) -> ( ( F ` .1. ) .x. x ) e. B ) |
| 22 | 20 12 13 21 | syl3anc | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( F ` .1. ) .x. x ) e. B ) |
| 23 | f1ocnvfv2 | |- ( ( F : ( Base ` R ) -1-1-onto-> B /\ ( ( F ` .1. ) .x. x ) e. B ) -> ( F ` ( `' F ` ( ( F ` .1. ) .x. x ) ) ) = ( ( F ` .1. ) .x. x ) ) |
|
| 24 | 19 22 23 | syl2an2r | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( `' F ` ( ( F ` .1. ) .x. x ) ) ) = ( ( F ` .1. ) .x. x ) ) |
| 25 | 5 1 | ringidcl | |- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 26 | 25 | 3ad2ant1 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> .1. e. ( Base ` R ) ) |
| 27 | 19 26 | jca | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( F : ( Base ` R ) -1-1-onto-> B /\ .1. e. ( Base ` R ) ) ) |
| 28 | 27 | adantr | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F : ( Base ` R ) -1-1-onto-> B /\ .1. e. ( Base ` R ) ) ) |
| 29 | f1ocnvfv1 | |- ( ( F : ( Base ` R ) -1-1-onto-> B /\ .1. e. ( Base ` R ) ) -> ( `' F ` ( F ` .1. ) ) = .1. ) |
|
| 30 | 28 29 | syl | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( `' F ` ( F ` .1. ) ) = .1. ) |
| 31 | 30 | oveq1d | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) = ( .1. ( .r ` R ) ( `' F ` x ) ) ) |
| 32 | simpl1 | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> R e. Ring ) |
|
| 33 | 2 5 | rngimf1o | |- ( `' F e. ( S RngIso R ) -> `' F : B -1-1-onto-> ( Base ` R ) ) |
| 34 | f1of | |- ( `' F : B -1-1-onto-> ( Base ` R ) -> `' F : B --> ( Base ` R ) ) |
|
| 35 | 33 34 | syl | |- ( `' F e. ( S RngIso R ) -> `' F : B --> ( Base ` R ) ) |
| 36 | 4 35 | syl | |- ( F e. ( R RngIso S ) -> `' F : B --> ( Base ` R ) ) |
| 37 | 36 | 3ad2ant3 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> `' F : B --> ( Base ` R ) ) |
| 38 | 37 | ffvelcdmda | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( `' F ` x ) e. ( Base ` R ) ) |
| 39 | 5 14 1 32 38 | ringlidmd | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( .1. ( .r ` R ) ( `' F ` x ) ) = ( `' F ` x ) ) |
| 40 | 31 39 | eqtrd | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) = ( `' F ` x ) ) |
| 41 | 40 | fveq2d | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) ) = ( F ` ( `' F ` x ) ) ) |
| 42 | f1ocnvfv2 | |- ( ( F : ( Base ` R ) -1-1-onto-> B /\ x e. B ) -> ( F ` ( `' F ` x ) ) = x ) |
|
| 43 | 19 42 | sylan | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( `' F ` x ) ) = x ) |
| 44 | 41 43 | eqtrd | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( ( `' F ` ( F ` .1. ) ) ( .r ` R ) ( `' F ` x ) ) ) = x ) |
| 45 | 17 24 44 | 3eqtr3d | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( F ` .1. ) .x. x ) = x ) |
| 46 | 4 | 3ad2ant3 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> `' F e. ( S RngIso R ) ) |
| 47 | 46 6 | syl | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> `' F e. ( S RngHom R ) ) |
| 48 | 47 | adantr | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> `' F e. ( S RngHom R ) ) |
| 49 | 2 3 14 | rnghmmul | |- ( ( `' F e. ( S RngHom R ) /\ x e. B /\ ( F ` .1. ) e. B ) -> ( `' F ` ( x .x. ( F ` .1. ) ) ) = ( ( `' F ` x ) ( .r ` R ) ( `' F ` ( F ` .1. ) ) ) ) |
| 50 | 48 13 12 49 | syl3anc | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( `' F ` ( x .x. ( F ` .1. ) ) ) = ( ( `' F ` x ) ( .r ` R ) ( `' F ` ( F ` .1. ) ) ) ) |
| 51 | 30 | oveq2d | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( `' F ` x ) ( .r ` R ) ( `' F ` ( F ` .1. ) ) ) = ( ( `' F ` x ) ( .r ` R ) .1. ) ) |
| 52 | 5 14 1 32 38 | ringridmd | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( `' F ` x ) ( .r ` R ) .1. ) = ( `' F ` x ) ) |
| 53 | 50 51 52 | 3eqtrd | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( `' F ` ( x .x. ( F ` .1. ) ) ) = ( `' F ` x ) ) |
| 54 | 53 | fveq2d | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( `' F ` ( x .x. ( F ` .1. ) ) ) ) = ( F ` ( `' F ` x ) ) ) |
| 55 | 2 3 | rngcl | |- ( ( S e. Rng /\ x e. B /\ ( F ` .1. ) e. B ) -> ( x .x. ( F ` .1. ) ) e. B ) |
| 56 | 20 13 12 55 | syl3anc | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( x .x. ( F ` .1. ) ) e. B ) |
| 57 | f1ocnvfv2 | |- ( ( F : ( Base ` R ) -1-1-onto-> B /\ ( x .x. ( F ` .1. ) ) e. B ) -> ( F ` ( `' F ` ( x .x. ( F ` .1. ) ) ) ) = ( x .x. ( F ` .1. ) ) ) |
|
| 58 | 19 56 57 | syl2an2r | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( F ` ( `' F ` ( x .x. ( F ` .1. ) ) ) ) = ( x .x. ( F ` .1. ) ) ) |
| 59 | 54 58 43 | 3eqtr3d | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( x .x. ( F ` .1. ) ) = x ) |
| 60 | 45 59 | jca | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ x e. B ) -> ( ( ( F ` .1. ) .x. x ) = x /\ ( x .x. ( F ` .1. ) ) = x ) ) |
| 61 | 60 | ralrimiva | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> A. x e. B ( ( ( F ` .1. ) .x. x ) = x /\ ( x .x. ( F ` .1. ) ) = x ) ) |