This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rngimcnv | |- ( F e. ( S RngIso T ) -> `' F e. ( T RngIso S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngimrcl | |- ( F e. ( S RngIso T ) -> ( S e. _V /\ T e. _V ) ) |
|
| 2 | isrngim | |- ( ( S e. _V /\ T e. _V ) -> ( F e. ( S RngIso T ) <-> ( F e. ( S RngHom T ) /\ `' F e. ( T RngHom S ) ) ) ) |
|
| 3 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 4 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 5 | 3 4 | rnghmf | |- ( F e. ( S RngHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 6 | frel | |- ( F : ( Base ` S ) --> ( Base ` T ) -> Rel F ) |
|
| 7 | dfrel2 | |- ( Rel F <-> `' `' F = F ) |
|
| 8 | 6 7 | sylib | |- ( F : ( Base ` S ) --> ( Base ` T ) -> `' `' F = F ) |
| 9 | 5 8 | syl | |- ( F e. ( S RngHom T ) -> `' `' F = F ) |
| 10 | id | |- ( F e. ( S RngHom T ) -> F e. ( S RngHom T ) ) |
|
| 11 | 9 10 | eqeltrd | |- ( F e. ( S RngHom T ) -> `' `' F e. ( S RngHom T ) ) |
| 12 | 11 | anim1ci | |- ( ( F e. ( S RngHom T ) /\ `' F e. ( T RngHom S ) ) -> ( `' F e. ( T RngHom S ) /\ `' `' F e. ( S RngHom T ) ) ) |
| 13 | isrngim | |- ( ( T e. _V /\ S e. _V ) -> ( `' F e. ( T RngIso S ) <-> ( `' F e. ( T RngHom S ) /\ `' `' F e. ( S RngHom T ) ) ) ) |
|
| 14 | 13 | ancoms | |- ( ( S e. _V /\ T e. _V ) -> ( `' F e. ( T RngIso S ) <-> ( `' F e. ( T RngHom S ) /\ `' `' F e. ( S RngHom T ) ) ) ) |
| 15 | 12 14 | imbitrrid | |- ( ( S e. _V /\ T e. _V ) -> ( ( F e. ( S RngHom T ) /\ `' F e. ( T RngHom S ) ) -> `' F e. ( T RngIso S ) ) ) |
| 16 | 2 15 | sylbid | |- ( ( S e. _V /\ T e. _V ) -> ( F e. ( S RngIso T ) -> `' F e. ( T RngIso S ) ) ) |
| 17 | 1 16 | mpcom | |- ( F e. ( S RngIso T ) -> `' F e. ( T RngIso S ) ) |