This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of non-unital rings is a bijection. (Contributed by AV, 23-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghmf1o.b | |- B = ( Base ` R ) |
|
| rnghmf1o.c | |- C = ( Base ` S ) |
||
| Assertion | rngimf1o | |- ( F e. ( R RngIso S ) -> F : B -1-1-onto-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmf1o.b | |- B = ( Base ` R ) |
|
| 2 | rnghmf1o.c | |- C = ( Base ` S ) |
|
| 3 | rngimrcl | |- ( F e. ( R RngIso S ) -> ( R e. _V /\ S e. _V ) ) |
|
| 4 | 1 2 | isrngim2 | |- ( ( R e. _V /\ S e. _V ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) ) ) |
| 5 | simpr | |- ( ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) -> F : B -1-1-onto-> C ) |
|
| 6 | 4 5 | biimtrdi | |- ( ( R e. _V /\ S e. _V ) -> ( F e. ( R RngIso S ) -> F : B -1-1-onto-> C ) ) |
| 7 | 3 6 | mpcom | |- ( F e. ( R RngIso S ) -> F : B -1-1-onto-> C ) |