This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then both rings are unital. (Contributed by AV, 27-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rngisomring | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> S e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> S e. Rng ) |
|
| 2 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 3 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 4 | 2 3 | rngisomfv1 | |- ( ( R e. Ring /\ F e. ( R RngIso S ) ) -> ( F ` ( 1r ` R ) ) e. ( Base ` S ) ) |
| 5 | 4 | 3adant2 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( F ` ( 1r ` R ) ) e. ( Base ` S ) ) |
| 6 | oveq1 | |- ( i = ( F ` ( 1r ` R ) ) -> ( i ( .r ` S ) x ) = ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) ) |
|
| 7 | 6 | eqeq1d | |- ( i = ( F ` ( 1r ` R ) ) -> ( ( i ( .r ` S ) x ) = x <-> ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x ) ) |
| 8 | oveq2 | |- ( i = ( F ` ( 1r ` R ) ) -> ( x ( .r ` S ) i ) = ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) ) |
|
| 9 | 8 | eqeq1d | |- ( i = ( F ` ( 1r ` R ) ) -> ( ( x ( .r ` S ) i ) = x <-> ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) |
| 10 | 7 9 | anbi12d | |- ( i = ( F ` ( 1r ` R ) ) -> ( ( ( i ( .r ` S ) x ) = x /\ ( x ( .r ` S ) i ) = x ) <-> ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) ) |
| 11 | 10 | ralbidv | |- ( i = ( F ` ( 1r ` R ) ) -> ( A. x e. ( Base ` S ) ( ( i ( .r ` S ) x ) = x /\ ( x ( .r ` S ) i ) = x ) <-> A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) ) |
| 12 | 11 | adantl | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ i = ( F ` ( 1r ` R ) ) ) -> ( A. x e. ( Base ` S ) ( ( i ( .r ` S ) x ) = x /\ ( x ( .r ` S ) i ) = x ) <-> A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) ) |
| 13 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 14 | 2 3 13 | rngisom1 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) |
| 15 | 5 12 14 | rspcedvd | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> E. i e. ( Base ` S ) A. x e. ( Base ` S ) ( ( i ( .r ` S ) x ) = x /\ ( x ( .r ` S ) i ) = x ) ) |
| 16 | 3 13 | isringrng | |- ( S e. Ring <-> ( S e. Rng /\ E. i e. ( Base ` S ) A. x e. ( Base ` S ) ( ( i ( .r ` S ) x ) = x /\ ( x ( .r ` S ) i ) = x ) ) ) |
| 17 | 1 15 16 | sylanbrc | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> S e. Ring ) |