This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is an element of the base set of the non-unital ring. (Contributed by AV, 27-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngisom1.1 | |- .1. = ( 1r ` R ) |
|
| rngisom1.b | |- B = ( Base ` S ) |
||
| Assertion | rngisomfv1 | |- ( ( R e. Ring /\ F e. ( R RngIso S ) ) -> ( F ` .1. ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngisom1.1 | |- .1. = ( 1r ` R ) |
|
| 2 | rngisom1.b | |- B = ( Base ` S ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 3 2 | rngimf1o | |- ( F e. ( R RngIso S ) -> F : ( Base ` R ) -1-1-onto-> B ) |
| 5 | f1of | |- ( F : ( Base ` R ) -1-1-onto-> B -> F : ( Base ` R ) --> B ) |
|
| 6 | 4 5 | syl | |- ( F e. ( R RngIso S ) -> F : ( Base ` R ) --> B ) |
| 7 | 6 | adantl | |- ( ( R e. Ring /\ F e. ( R RngIso S ) ) -> F : ( Base ` R ) --> B ) |
| 8 | 3 1 | ringidcl | |- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 9 | 8 | adantr | |- ( ( R e. Ring /\ F e. ( R RngIso S ) ) -> .1. e. ( Base ` R ) ) |
| 10 | 7 9 | ffvelcdmd | |- ( ( R e. Ring /\ F e. ( R RngIso S ) ) -> ( F ` .1. ) e. B ) |