This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of non-unital rings preserves multiplication. (Contributed by AV, 23-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghmmul.x | |- X = ( Base ` R ) |
|
| rnghmmul.m | |- .x. = ( .r ` R ) |
||
| rnghmmul.n | |- .X. = ( .r ` S ) |
||
| Assertion | rnghmmul | |- ( ( F e. ( R RngHom S ) /\ A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmmul.x | |- X = ( Base ` R ) |
|
| 2 | rnghmmul.m | |- .x. = ( .r ` R ) |
|
| 3 | rnghmmul.n | |- .X. = ( .r ` S ) |
|
| 4 | 1 2 3 | isrnghm | |- ( F e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. X A. y e. X ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) ) ) |
| 5 | fvoveq1 | |- ( x = A -> ( F ` ( x .x. y ) ) = ( F ` ( A .x. y ) ) ) |
|
| 6 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 7 | 6 | oveq1d | |- ( x = A -> ( ( F ` x ) .X. ( F ` y ) ) = ( ( F ` A ) .X. ( F ` y ) ) ) |
| 8 | 5 7 | eqeq12d | |- ( x = A -> ( ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) <-> ( F ` ( A .x. y ) ) = ( ( F ` A ) .X. ( F ` y ) ) ) ) |
| 9 | oveq2 | |- ( y = B -> ( A .x. y ) = ( A .x. B ) ) |
|
| 10 | 9 | fveq2d | |- ( y = B -> ( F ` ( A .x. y ) ) = ( F ` ( A .x. B ) ) ) |
| 11 | fveq2 | |- ( y = B -> ( F ` y ) = ( F ` B ) ) |
|
| 12 | 11 | oveq2d | |- ( y = B -> ( ( F ` A ) .X. ( F ` y ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) |
| 13 | 10 12 | eqeq12d | |- ( y = B -> ( ( F ` ( A .x. y ) ) = ( ( F ` A ) .X. ( F ` y ) ) <-> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) ) |
| 14 | 8 13 | rspc2va | |- ( ( ( A e. X /\ B e. X ) /\ A. x e. X A. y e. X ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) |
| 15 | 14 | expcom | |- ( A. x e. X A. y e. X ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) -> ( ( A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) ) |
| 16 | 15 | ad2antll | |- ( ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. X A. y e. X ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) ) -> ( ( A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) ) |
| 17 | 4 16 | sylbi | |- ( F e. ( R RngHom S ) -> ( ( A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) ) |
| 18 | 17 | 3impib | |- ( ( F e. ( R RngHom S ) /\ A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) |