This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is a ring unity of the non-unital ring. (Contributed by AV, 27-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngisom1.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| rngisom1.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| rngisom1.t | ⊢ · = ( .r ‘ 𝑆 ) | ||
| Assertion | rngisom1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 1 ) · 𝑥 ) = 𝑥 ∧ ( 𝑥 · ( 𝐹 ‘ 1 ) ) = 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngisom1.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 2 | rngisom1.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | rngisom1.t | ⊢ · = ( .r ‘ 𝑆 ) | |
| 4 | rngimcnv | ⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → ◡ 𝐹 ∈ ( 𝑆 RngIso 𝑅 ) ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | 2 5 | rngimrnghm | ⊢ ( ◡ 𝐹 ∈ ( 𝑆 RngIso 𝑅 ) → ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) |
| 7 | 4 6 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) |
| 10 | 1 2 | rngisomfv1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ 1 ) ∈ 𝐵 ) |
| 11 | 10 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ 1 ) ∈ 𝐵 ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 1 ) ∈ 𝐵 ) |
| 13 | simpr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 14 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 15 | 2 3 14 | rnghmmul | ⊢ ( ( ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ∧ ( 𝐹 ‘ 1 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) = ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 16 | 9 12 13 15 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) = ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) ) = ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
| 18 | 5 2 | rngimf1o | ⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ) |
| 19 | 18 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ) |
| 20 | simpl2 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ∈ Rng ) | |
| 21 | 2 3 | rngcl | ⊢ ( ( 𝑆 ∈ Rng ∧ ( 𝐹 ‘ 1 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 1 ) · 𝑥 ) ∈ 𝐵 ) |
| 22 | 20 12 13 21 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 1 ) · 𝑥 ) ∈ 𝐵 ) |
| 23 | f1ocnvfv2 | ⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ∧ ( ( 𝐹 ‘ 1 ) · 𝑥 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) ) = ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) | |
| 24 | 19 22 23 | syl2an2r | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) ) = ( ( 𝐹 ‘ 1 ) · 𝑥 ) ) |
| 25 | 5 1 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 27 | 19 26 | jca | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ∧ 1 ∈ ( Base ‘ 𝑅 ) ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ∧ 1 ∈ ( Base ‘ 𝑅 ) ) ) |
| 29 | f1ocnvfv1 | ⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) = 1 ) | |
| 30 | 28 29 | syl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) = 1 ) |
| 31 | 30 | oveq1d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) = ( 1 ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 32 | simpl1 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑅 ∈ Ring ) | |
| 33 | 2 5 | rngimf1o | ⊢ ( ◡ 𝐹 ∈ ( 𝑆 RngIso 𝑅 ) → ◡ 𝐹 : 𝐵 –1-1-onto→ ( Base ‘ 𝑅 ) ) |
| 34 | f1of | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ ( Base ‘ 𝑅 ) → ◡ 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) | |
| 35 | 33 34 | syl | ⊢ ( ◡ 𝐹 ∈ ( 𝑆 RngIso 𝑅 ) → ◡ 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 36 | 4 35 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → ◡ 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 37 | 36 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ◡ 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 38 | 37 | ffvelcdmda | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 39 | 5 14 1 32 38 | ringlidmd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 40 | 31 39 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 41 | 40 | fveq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 42 | f1ocnvfv2 | ⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) | |
| 43 | 19 42 | sylan | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 44 | 41 43 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) = 𝑥 ) |
| 45 | 17 24 44 | 3eqtr3d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 1 ) · 𝑥 ) = 𝑥 ) |
| 46 | 4 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ◡ 𝐹 ∈ ( 𝑆 RngIso 𝑅 ) ) |
| 47 | 46 6 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) |
| 49 | 2 3 14 | rnghmmul | ⊢ ( ( ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ∧ 𝑥 ∈ 𝐵 ∧ ( 𝐹 ‘ 1 ) ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 50 | 48 13 12 49 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 51 | 30 | oveq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ◡ 𝐹 ‘ ( 𝐹 ‘ 1 ) ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) 1 ) ) |
| 52 | 5 14 1 32 38 | ringridmd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) 1 ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 53 | 50 51 52 | 3eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 54 | 53 | fveq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 55 | 2 3 | rngcl | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ ( 𝐹 ‘ 1 ) ∈ 𝐵 ) → ( 𝑥 · ( 𝐹 ‘ 1 ) ) ∈ 𝐵 ) |
| 56 | 20 13 12 55 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · ( 𝐹 ‘ 1 ) ) ∈ 𝐵 ) |
| 57 | f1ocnvfv2 | ⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ∧ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) ) = ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) | |
| 58 | 19 56 57 | syl2an2r | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) ) = ( 𝑥 · ( 𝐹 ‘ 1 ) ) ) |
| 59 | 54 58 43 | 3eqtr3d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · ( 𝐹 ‘ 1 ) ) = 𝑥 ) |
| 60 | 45 59 | jca | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 1 ) · 𝑥 ) = 𝑥 ∧ ( 𝑥 · ( 𝐹 ‘ 1 ) ) = 𝑥 ) ) |
| 61 | 60 | ralrimiva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ∀ 𝑥 ∈ 𝐵 ( ( ( 𝐹 ‘ 1 ) · 𝑥 ) = 𝑥 ∧ ( 𝑥 · ( 𝐹 ‘ 1 ) ) = 𝑥 ) ) |