This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Provide a ring homomorphism between two univariate power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmpsr1.p | |- P = ( PwSer1 ` R ) |
|
| rhmpsr1.q | |- Q = ( PwSer1 ` S ) |
||
| rhmpsr1.b | |- B = ( Base ` P ) |
||
| rhmpsr1.f | |- F = ( p e. B |-> ( H o. p ) ) |
||
| rhmpsr1.h | |- ( ph -> H e. ( R RingHom S ) ) |
||
| Assertion | rhmpsr1 | |- ( ph -> F e. ( P RingHom Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmpsr1.p | |- P = ( PwSer1 ` R ) |
|
| 2 | rhmpsr1.q | |- Q = ( PwSer1 ` S ) |
|
| 3 | rhmpsr1.b | |- B = ( Base ` P ) |
|
| 4 | rhmpsr1.f | |- F = ( p e. B |-> ( H o. p ) ) |
|
| 5 | rhmpsr1.h | |- ( ph -> H e. ( R RingHom S ) ) |
|
| 6 | eqid | |- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
|
| 7 | eqid | |- ( 1o mPwSer S ) = ( 1o mPwSer S ) |
|
| 8 | 1 3 6 | psr1bas2 | |- B = ( Base ` ( 1o mPwSer R ) ) |
| 9 | 1oex | |- 1o e. _V |
|
| 10 | 9 | a1i | |- ( ph -> 1o e. _V ) |
| 11 | 6 7 8 4 10 5 | rhmpsr | |- ( ph -> F e. ( ( 1o mPwSer R ) RingHom ( 1o mPwSer S ) ) ) |
| 12 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 13 | 1 12 6 | psr1bas2 | |- ( Base ` P ) = ( Base ` ( 1o mPwSer R ) ) |
| 14 | 13 | a1i | |- ( ph -> ( Base ` P ) = ( Base ` ( 1o mPwSer R ) ) ) |
| 15 | eqid | |- ( Base ` Q ) = ( Base ` Q ) |
|
| 16 | 2 15 7 | psr1bas2 | |- ( Base ` Q ) = ( Base ` ( 1o mPwSer S ) ) |
| 17 | 16 | a1i | |- ( ph -> ( Base ` Q ) = ( Base ` ( 1o mPwSer S ) ) ) |
| 18 | eqidd | |- ( ph -> ( Base ` P ) = ( Base ` P ) ) |
|
| 19 | eqidd | |- ( ph -> ( Base ` Q ) = ( Base ` Q ) ) |
|
| 20 | eqid | |- ( +g ` P ) = ( +g ` P ) |
|
| 21 | 1 6 20 | psr1plusg | |- ( +g ` P ) = ( +g ` ( 1o mPwSer R ) ) |
| 22 | 21 | eqcomi | |- ( +g ` ( 1o mPwSer R ) ) = ( +g ` P ) |
| 23 | 22 | a1i | |- ( ( ph /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( +g ` ( 1o mPwSer R ) ) = ( +g ` P ) ) |
| 24 | 23 | oveqd | |- ( ( ph /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( +g ` ( 1o mPwSer R ) ) y ) = ( x ( +g ` P ) y ) ) |
| 25 | eqid | |- ( +g ` Q ) = ( +g ` Q ) |
|
| 26 | 2 7 25 | psr1plusg | |- ( +g ` Q ) = ( +g ` ( 1o mPwSer S ) ) |
| 27 | 26 | eqcomi | |- ( +g ` ( 1o mPwSer S ) ) = ( +g ` Q ) |
| 28 | 27 | a1i | |- ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( +g ` ( 1o mPwSer S ) ) = ( +g ` Q ) ) |
| 29 | 28 | oveqd | |- ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( x ( +g ` ( 1o mPwSer S ) ) y ) = ( x ( +g ` Q ) y ) ) |
| 30 | eqid | |- ( .r ` P ) = ( .r ` P ) |
|
| 31 | 1 6 30 | psr1mulr | |- ( .r ` P ) = ( .r ` ( 1o mPwSer R ) ) |
| 32 | 31 | eqcomi | |- ( .r ` ( 1o mPwSer R ) ) = ( .r ` P ) |
| 33 | 32 | a1i | |- ( ( ph /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( .r ` ( 1o mPwSer R ) ) = ( .r ` P ) ) |
| 34 | 33 | oveqd | |- ( ( ph /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( .r ` ( 1o mPwSer R ) ) y ) = ( x ( .r ` P ) y ) ) |
| 35 | eqid | |- ( .r ` Q ) = ( .r ` Q ) |
|
| 36 | 2 7 35 | psr1mulr | |- ( .r ` Q ) = ( .r ` ( 1o mPwSer S ) ) |
| 37 | 36 | eqcomi | |- ( .r ` ( 1o mPwSer S ) ) = ( .r ` Q ) |
| 38 | 37 | a1i | |- ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( .r ` ( 1o mPwSer S ) ) = ( .r ` Q ) ) |
| 39 | 38 | oveqd | |- ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( x ( .r ` ( 1o mPwSer S ) ) y ) = ( x ( .r ` Q ) y ) ) |
| 40 | 14 17 18 19 24 29 34 39 | rhmpropd | |- ( ph -> ( ( 1o mPwSer R ) RingHom ( 1o mPwSer S ) ) = ( P RingHom Q ) ) |
| 41 | 11 40 | eleqtrd | |- ( ph -> F e. ( P RingHom Q ) ) |