This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that the ring homomorphism in rhmpsr preserves addition. (Contributed by SN, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmcoaddpsr.p | |- P = ( I mPwSer R ) |
|
| mhmcoaddpsr.q | |- Q = ( I mPwSer S ) |
||
| mhmcoaddpsr.b | |- B = ( Base ` P ) |
||
| mhmcoaddpsr.c | |- C = ( Base ` Q ) |
||
| mhmcoaddpsr.1 | |- .+ = ( +g ` P ) |
||
| mhmcoaddpsr.2 | |- .+b = ( +g ` Q ) |
||
| mhmcoaddpsr.h | |- ( ph -> H e. ( R MndHom S ) ) |
||
| mhmcoaddpsr.f | |- ( ph -> F e. B ) |
||
| mhmcoaddpsr.g | |- ( ph -> G e. B ) |
||
| Assertion | mhmcoaddpsr | |- ( ph -> ( H o. ( F .+ G ) ) = ( ( H o. F ) .+b ( H o. G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmcoaddpsr.p | |- P = ( I mPwSer R ) |
|
| 2 | mhmcoaddpsr.q | |- Q = ( I mPwSer S ) |
|
| 3 | mhmcoaddpsr.b | |- B = ( Base ` P ) |
|
| 4 | mhmcoaddpsr.c | |- C = ( Base ` Q ) |
|
| 5 | mhmcoaddpsr.1 | |- .+ = ( +g ` P ) |
|
| 6 | mhmcoaddpsr.2 | |- .+b = ( +g ` Q ) |
|
| 7 | mhmcoaddpsr.h | |- ( ph -> H e. ( R MndHom S ) ) |
|
| 8 | mhmcoaddpsr.f | |- ( ph -> F e. B ) |
|
| 9 | mhmcoaddpsr.g | |- ( ph -> G e. B ) |
|
| 10 | fvexd | |- ( ph -> ( Base ` R ) e. _V ) |
|
| 11 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 12 | 11 | rabex | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V |
| 13 | 12 | a1i | |- ( ph -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
| 14 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 15 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 16 | 1 14 15 3 8 | psrelbas | |- ( ph -> F : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 17 | 10 13 16 | elmapdd | |- ( ph -> F e. ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 18 | 1 14 15 3 9 | psrelbas | |- ( ph -> G : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 19 | 10 13 18 | elmapdd | |- ( ph -> G e. ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 20 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 21 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 22 | 14 20 21 | mhmvlin | |- ( ( H e. ( R MndHom S ) /\ F e. ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) /\ G e. ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) -> ( H o. ( F oF ( +g ` R ) G ) ) = ( ( H o. F ) oF ( +g ` S ) ( H o. G ) ) ) |
| 23 | 7 17 19 22 | syl3anc | |- ( ph -> ( H o. ( F oF ( +g ` R ) G ) ) = ( ( H o. F ) oF ( +g ` S ) ( H o. G ) ) ) |
| 24 | 1 3 20 5 8 9 | psradd | |- ( ph -> ( F .+ G ) = ( F oF ( +g ` R ) G ) ) |
| 25 | 24 | coeq2d | |- ( ph -> ( H o. ( F .+ G ) ) = ( H o. ( F oF ( +g ` R ) G ) ) ) |
| 26 | 1 2 3 4 7 8 | mhmcopsr | |- ( ph -> ( H o. F ) e. C ) |
| 27 | 1 2 3 4 7 9 | mhmcopsr | |- ( ph -> ( H o. G ) e. C ) |
| 28 | 2 4 21 6 26 27 | psradd | |- ( ph -> ( ( H o. F ) .+b ( H o. G ) ) = ( ( H o. F ) oF ( +g ` S ) ( H o. G ) ) ) |
| 29 | 23 25 28 | 3eqtr4d | |- ( ph -> ( H o. ( F .+ G ) ) = ( ( H o. F ) .+b ( H o. G ) ) ) |