This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a monoid homomorphism and a power series is a power series. (Contributed by SN, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmcopsr.p | |- P = ( I mPwSer R ) |
|
| mhmcopsr.q | |- Q = ( I mPwSer S ) |
||
| mhmcopsr.b | |- B = ( Base ` P ) |
||
| mhmcopsr.c | |- C = ( Base ` Q ) |
||
| mhmcopsr.h | |- ( ph -> H e. ( R MndHom S ) ) |
||
| mhmcopsr.f | |- ( ph -> F e. B ) |
||
| Assertion | mhmcopsr | |- ( ph -> ( H o. F ) e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmcopsr.p | |- P = ( I mPwSer R ) |
|
| 2 | mhmcopsr.q | |- Q = ( I mPwSer S ) |
|
| 3 | mhmcopsr.b | |- B = ( Base ` P ) |
|
| 4 | mhmcopsr.c | |- C = ( Base ` Q ) |
|
| 5 | mhmcopsr.h | |- ( ph -> H e. ( R MndHom S ) ) |
|
| 6 | mhmcopsr.f | |- ( ph -> F e. B ) |
|
| 7 | fvexd | |- ( ph -> ( Base ` S ) e. _V ) |
|
| 8 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 9 | 8 | rabex | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V |
| 10 | 9 | a1i | |- ( ph -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
| 11 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 12 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 13 | 11 12 | mhmf | |- ( H e. ( R MndHom S ) -> H : ( Base ` R ) --> ( Base ` S ) ) |
| 14 | 5 13 | syl | |- ( ph -> H : ( Base ` R ) --> ( Base ` S ) ) |
| 15 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 16 | 1 11 15 3 6 | psrelbas | |- ( ph -> F : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 17 | 14 16 | fcod | |- ( ph -> ( H o. F ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` S ) ) |
| 18 | 7 10 17 | elmapdd | |- ( ph -> ( H o. F ) e. ( ( Base ` S ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 19 | reldmpsr | |- Rel dom mPwSer |
|
| 20 | 19 1 3 | elbasov | |- ( F e. B -> ( I e. _V /\ R e. _V ) ) |
| 21 | 6 20 | syl | |- ( ph -> ( I e. _V /\ R e. _V ) ) |
| 22 | 21 | simpld | |- ( ph -> I e. _V ) |
| 23 | 2 12 15 4 22 | psrbas | |- ( ph -> C = ( ( Base ` S ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 24 | 18 23 | eleqtrrd | |- ( ph -> ( H o. F ) e. C ) |