This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resghm.u | |- U = ( S |`s X ) |
|
| Assertion | resghm | |- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( F |` X ) e. ( U GrpHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resghm.u | |- U = ( S |`s X ) |
|
| 2 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 3 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 4 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 5 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 6 | 1 | subggrp | |- ( X e. ( SubGrp ` S ) -> U e. Grp ) |
| 7 | 6 | adantl | |- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> U e. Grp ) |
| 8 | ghmgrp2 | |- ( F e. ( S GrpHom T ) -> T e. Grp ) |
|
| 9 | 8 | adantr | |- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> T e. Grp ) |
| 10 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 11 | 10 3 | ghmf | |- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 12 | 10 | subgss | |- ( X e. ( SubGrp ` S ) -> X C_ ( Base ` S ) ) |
| 13 | fssres | |- ( ( F : ( Base ` S ) --> ( Base ` T ) /\ X C_ ( Base ` S ) ) -> ( F |` X ) : X --> ( Base ` T ) ) |
|
| 14 | 11 12 13 | syl2an | |- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( F |` X ) : X --> ( Base ` T ) ) |
| 15 | 12 | adantl | |- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> X C_ ( Base ` S ) ) |
| 16 | 1 10 | ressbas2 | |- ( X C_ ( Base ` S ) -> X = ( Base ` U ) ) |
| 17 | 15 16 | syl | |- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> X = ( Base ` U ) ) |
| 18 | 17 | feq2d | |- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( ( F |` X ) : X --> ( Base ` T ) <-> ( F |` X ) : ( Base ` U ) --> ( Base ` T ) ) ) |
| 19 | 14 18 | mpbid | |- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( F |` X ) : ( Base ` U ) --> ( Base ` T ) ) |
| 20 | eleq2 | |- ( X = ( Base ` U ) -> ( a e. X <-> a e. ( Base ` U ) ) ) |
|
| 21 | eleq2 | |- ( X = ( Base ` U ) -> ( b e. X <-> b e. ( Base ` U ) ) ) |
|
| 22 | 20 21 | anbi12d | |- ( X = ( Base ` U ) -> ( ( a e. X /\ b e. X ) <-> ( a e. ( Base ` U ) /\ b e. ( Base ` U ) ) ) ) |
| 23 | 17 22 | syl | |- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( ( a e. X /\ b e. X ) <-> ( a e. ( Base ` U ) /\ b e. ( Base ` U ) ) ) ) |
| 24 | 23 | biimpar | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. ( Base ` U ) /\ b e. ( Base ` U ) ) ) -> ( a e. X /\ b e. X ) ) |
| 25 | simpll | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> F e. ( S GrpHom T ) ) |
|
| 26 | 15 | sselda | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ a e. X ) -> a e. ( Base ` S ) ) |
| 27 | 26 | adantrr | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> a e. ( Base ` S ) ) |
| 28 | 15 | sselda | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ b e. X ) -> b e. ( Base ` S ) ) |
| 29 | 28 | adantrl | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> b e. ( Base ` S ) ) |
| 30 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 31 | 10 30 5 | ghmlin | |- ( ( F e. ( S GrpHom T ) /\ a e. ( Base ` S ) /\ b e. ( Base ` S ) ) -> ( F ` ( a ( +g ` S ) b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) |
| 32 | 25 27 29 31 | syl3anc | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( F ` ( a ( +g ` S ) b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) |
| 33 | 1 30 | ressplusg | |- ( X e. ( SubGrp ` S ) -> ( +g ` S ) = ( +g ` U ) ) |
| 34 | 33 | ad2antlr | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( +g ` S ) = ( +g ` U ) ) |
| 35 | 34 | oveqd | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( a ( +g ` S ) b ) = ( a ( +g ` U ) b ) ) |
| 36 | 35 | fveq2d | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( ( F |` X ) ` ( a ( +g ` S ) b ) ) = ( ( F |` X ) ` ( a ( +g ` U ) b ) ) ) |
| 37 | 30 | subgcl | |- ( ( X e. ( SubGrp ` S ) /\ a e. X /\ b e. X ) -> ( a ( +g ` S ) b ) e. X ) |
| 38 | 37 | 3expb | |- ( ( X e. ( SubGrp ` S ) /\ ( a e. X /\ b e. X ) ) -> ( a ( +g ` S ) b ) e. X ) |
| 39 | 38 | adantll | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( a ( +g ` S ) b ) e. X ) |
| 40 | 39 | fvresd | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( ( F |` X ) ` ( a ( +g ` S ) b ) ) = ( F ` ( a ( +g ` S ) b ) ) ) |
| 41 | 36 40 | eqtr3d | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( ( F |` X ) ` ( a ( +g ` U ) b ) ) = ( F ` ( a ( +g ` S ) b ) ) ) |
| 42 | fvres | |- ( a e. X -> ( ( F |` X ) ` a ) = ( F ` a ) ) |
|
| 43 | fvres | |- ( b e. X -> ( ( F |` X ) ` b ) = ( F ` b ) ) |
|
| 44 | 42 43 | oveqan12d | |- ( ( a e. X /\ b e. X ) -> ( ( ( F |` X ) ` a ) ( +g ` T ) ( ( F |` X ) ` b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) |
| 45 | 44 | adantl | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( ( ( F |` X ) ` a ) ( +g ` T ) ( ( F |` X ) ` b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) |
| 46 | 32 41 45 | 3eqtr4d | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. X /\ b e. X ) ) -> ( ( F |` X ) ` ( a ( +g ` U ) b ) ) = ( ( ( F |` X ) ` a ) ( +g ` T ) ( ( F |` X ) ` b ) ) ) |
| 47 | 24 46 | syldan | |- ( ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) /\ ( a e. ( Base ` U ) /\ b e. ( Base ` U ) ) ) -> ( ( F |` X ) ` ( a ( +g ` U ) b ) ) = ( ( ( F |` X ) ` a ) ( +g ` T ) ( ( F |` X ) ` b ) ) ) |
| 48 | 2 3 4 5 7 9 19 47 | isghmd | |- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( F |` X ) e. ( U GrpHom T ) ) |