This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the codomain of a (ring) homomorphism. resghm2b analog. (Contributed by SN, 7-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resrhm2b.u | |- U = ( T |`s X ) |
|
| Assertion | resrhm2b | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( F e. ( S RingHom T ) <-> F e. ( S RingHom U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resrhm2b.u | |- U = ( T |`s X ) |
|
| 2 | subrgsubg | |- ( X e. ( SubRing ` T ) -> X e. ( SubGrp ` T ) ) |
|
| 3 | 1 | resghm2b | |- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) |
| 4 | 2 3 | sylan | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) |
| 5 | eqid | |- ( mulGrp ` T ) = ( mulGrp ` T ) |
|
| 6 | 5 | subrgsubm | |- ( X e. ( SubRing ` T ) -> X e. ( SubMnd ` ( mulGrp ` T ) ) ) |
| 7 | eqid | |- ( ( mulGrp ` T ) |`s X ) = ( ( mulGrp ` T ) |`s X ) |
|
| 8 | 7 | resmhm2b | |- ( ( X e. ( SubMnd ` ( mulGrp ` T ) ) /\ ran F C_ X ) -> ( F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) <-> F e. ( ( mulGrp ` S ) MndHom ( ( mulGrp ` T ) |`s X ) ) ) ) |
| 9 | 6 8 | sylan | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) <-> F e. ( ( mulGrp ` S ) MndHom ( ( mulGrp ` T ) |`s X ) ) ) ) |
| 10 | subrgrcl | |- ( X e. ( SubRing ` T ) -> T e. Ring ) |
|
| 11 | 1 5 | mgpress | |- ( ( T e. Ring /\ X e. ( SubRing ` T ) ) -> ( ( mulGrp ` T ) |`s X ) = ( mulGrp ` U ) ) |
| 12 | 10 11 | mpancom | |- ( X e. ( SubRing ` T ) -> ( ( mulGrp ` T ) |`s X ) = ( mulGrp ` U ) ) |
| 13 | 12 | adantr | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( mulGrp ` T ) |`s X ) = ( mulGrp ` U ) ) |
| 14 | 13 | oveq2d | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( mulGrp ` S ) MndHom ( ( mulGrp ` T ) |`s X ) ) = ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) |
| 15 | 14 | eleq2d | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( F e. ( ( mulGrp ` S ) MndHom ( ( mulGrp ` T ) |`s X ) ) <-> F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) |
| 16 | 9 15 | bitrd | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) <-> F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) |
| 17 | 4 16 | anbi12d | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( F e. ( S GrpHom T ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) <-> ( F e. ( S GrpHom U ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) ) |
| 18 | 17 | anbi2d | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( S e. Ring /\ ( F e. ( S GrpHom T ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) <-> ( S e. Ring /\ ( F e. ( S GrpHom U ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) ) ) |
| 19 | 10 | adantr | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> T e. Ring ) |
| 20 | 19 | biantrud | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( S e. Ring <-> ( S e. Ring /\ T e. Ring ) ) ) |
| 21 | 20 | anbi1d | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( S e. Ring /\ ( F e. ( S GrpHom T ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) <-> ( ( S e. Ring /\ T e. Ring ) /\ ( F e. ( S GrpHom T ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) ) ) |
| 22 | 1 | subrgring | |- ( X e. ( SubRing ` T ) -> U e. Ring ) |
| 23 | 22 | adantr | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> U e. Ring ) |
| 24 | 23 | biantrud | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( S e. Ring <-> ( S e. Ring /\ U e. Ring ) ) ) |
| 25 | 24 | anbi1d | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( S e. Ring /\ ( F e. ( S GrpHom U ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) <-> ( ( S e. Ring /\ U e. Ring ) /\ ( F e. ( S GrpHom U ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) ) ) |
| 26 | 18 21 25 | 3bitr3d | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( ( ( S e. Ring /\ T e. Ring ) /\ ( F e. ( S GrpHom T ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) <-> ( ( S e. Ring /\ U e. Ring ) /\ ( F e. ( S GrpHom U ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) ) ) |
| 27 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 28 | 27 5 | isrhm | |- ( F e. ( S RingHom T ) <-> ( ( S e. Ring /\ T e. Ring ) /\ ( F e. ( S GrpHom T ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) ) |
| 29 | eqid | |- ( mulGrp ` U ) = ( mulGrp ` U ) |
|
| 30 | 27 29 | isrhm | |- ( F e. ( S RingHom U ) <-> ( ( S e. Ring /\ U e. Ring ) /\ ( F e. ( S GrpHom U ) /\ F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) ) |
| 31 | 26 28 30 | 3bitr4g | |- ( ( X e. ( SubRing ` T ) /\ ran F C_ X ) -> ( F e. ( S RingHom T ) <-> F e. ( S RingHom U ) ) ) |