This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resmhm.u | |- U = ( S |`s X ) |
|
| Assertion | resmhm | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( F |` X ) e. ( U MndHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmhm.u | |- U = ( S |`s X ) |
|
| 2 | mhmrcl2 | |- ( F e. ( S MndHom T ) -> T e. Mnd ) |
|
| 3 | 1 | submmnd | |- ( X e. ( SubMnd ` S ) -> U e. Mnd ) |
| 4 | 2 3 | anim12ci | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( U e. Mnd /\ T e. Mnd ) ) |
| 5 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 6 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 7 | 5 6 | mhmf | |- ( F e. ( S MndHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 8 | 5 | submss | |- ( X e. ( SubMnd ` S ) -> X C_ ( Base ` S ) ) |
| 9 | fssres | |- ( ( F : ( Base ` S ) --> ( Base ` T ) /\ X C_ ( Base ` S ) ) -> ( F |` X ) : X --> ( Base ` T ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( F |` X ) : X --> ( Base ` T ) ) |
| 11 | 8 | adantl | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> X C_ ( Base ` S ) ) |
| 12 | 1 5 | ressbas2 | |- ( X C_ ( Base ` S ) -> X = ( Base ` U ) ) |
| 13 | 11 12 | syl | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> X = ( Base ` U ) ) |
| 14 | 13 | feq2d | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) : X --> ( Base ` T ) <-> ( F |` X ) : ( Base ` U ) --> ( Base ` T ) ) ) |
| 15 | 10 14 | mpbid | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( F |` X ) : ( Base ` U ) --> ( Base ` T ) ) |
| 16 | simpll | |- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> F e. ( S MndHom T ) ) |
|
| 17 | 8 | ad2antlr | |- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> X C_ ( Base ` S ) ) |
| 18 | simprl | |- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> x e. X ) |
|
| 19 | 17 18 | sseldd | |- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> x e. ( Base ` S ) ) |
| 20 | simprr | |- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> y e. X ) |
|
| 21 | 17 20 | sseldd | |- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> y e. ( Base ` S ) ) |
| 22 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 23 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 24 | 5 22 23 | mhmlin | |- ( ( F e. ( S MndHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 25 | 16 19 21 24 | syl3anc | |- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 26 | 22 | submcl | |- ( ( X e. ( SubMnd ` S ) /\ x e. X /\ y e. X ) -> ( x ( +g ` S ) y ) e. X ) |
| 27 | 26 | 3expb | |- ( ( X e. ( SubMnd ` S ) /\ ( x e. X /\ y e. X ) ) -> ( x ( +g ` S ) y ) e. X ) |
| 28 | 27 | adantll | |- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( x ( +g ` S ) y ) e. X ) |
| 29 | 28 | fvresd | |- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( F ` ( x ( +g ` S ) y ) ) ) |
| 30 | fvres | |- ( x e. X -> ( ( F |` X ) ` x ) = ( F ` x ) ) |
|
| 31 | fvres | |- ( y e. X -> ( ( F |` X ) ` y ) = ( F ` y ) ) |
|
| 32 | 30 31 | oveqan12d | |- ( ( x e. X /\ y e. X ) -> ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 33 | 32 | adantl | |- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 34 | 25 29 33 | 3eqtr4d | |- ( ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) /\ ( x e. X /\ y e. X ) ) -> ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) |
| 35 | 34 | ralrimivva | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> A. x e. X A. y e. X ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) |
| 36 | 1 22 | ressplusg | |- ( X e. ( SubMnd ` S ) -> ( +g ` S ) = ( +g ` U ) ) |
| 37 | 36 | adantl | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( +g ` S ) = ( +g ` U ) ) |
| 38 | 37 | oveqd | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( x ( +g ` S ) y ) = ( x ( +g ` U ) y ) ) |
| 39 | 38 | fveqeq2d | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) <-> ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) |
| 40 | 13 39 | raleqbidv | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( A. y e. X ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) <-> A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) |
| 41 | 13 40 | raleqbidv | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( A. x e. X A. y e. X ( ( F |` X ) ` ( x ( +g ` S ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) <-> A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) ) |
| 42 | 35 41 | mpbid | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) ) |
| 43 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 44 | 43 | subm0cl | |- ( X e. ( SubMnd ` S ) -> ( 0g ` S ) e. X ) |
| 45 | 44 | adantl | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( 0g ` S ) e. X ) |
| 46 | 45 | fvresd | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) ` ( 0g ` S ) ) = ( F ` ( 0g ` S ) ) ) |
| 47 | 1 43 | subm0 | |- ( X e. ( SubMnd ` S ) -> ( 0g ` S ) = ( 0g ` U ) ) |
| 48 | 47 | adantl | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( 0g ` S ) = ( 0g ` U ) ) |
| 49 | 48 | fveq2d | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) ` ( 0g ` S ) ) = ( ( F |` X ) ` ( 0g ` U ) ) ) |
| 50 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 51 | 43 50 | mhm0 | |- ( F e. ( S MndHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 52 | 51 | adantr | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 53 | 46 49 52 | 3eqtr3d | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) ` ( 0g ` U ) ) = ( 0g ` T ) ) |
| 54 | 15 42 53 | 3jca | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( ( F |` X ) : ( Base ` U ) --> ( Base ` T ) /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) /\ ( ( F |` X ) ` ( 0g ` U ) ) = ( 0g ` T ) ) ) |
| 55 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 56 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 57 | eqid | |- ( 0g ` U ) = ( 0g ` U ) |
|
| 58 | 55 6 56 23 57 50 | ismhm | |- ( ( F |` X ) e. ( U MndHom T ) <-> ( ( U e. Mnd /\ T e. Mnd ) /\ ( ( F |` X ) : ( Base ` U ) --> ( Base ` T ) /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( ( F |` X ) ` ( x ( +g ` U ) y ) ) = ( ( ( F |` X ) ` x ) ( +g ` T ) ( ( F |` X ) ` y ) ) /\ ( ( F |` X ) ` ( 0g ` U ) ) = ( 0g ` T ) ) ) ) |
| 59 | 4 54 58 | sylanbrc | |- ( ( F e. ( S MndHom T ) /\ X e. ( SubMnd ` S ) ) -> ( F |` X ) e. ( U MndHom T ) ) |