This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrhm.m | |- M = ( mulGrp ` R ) |
|
| isrhm.n | |- N = ( mulGrp ` S ) |
||
| Assertion | isrhm | |- ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrhm.m | |- M = ( mulGrp ` R ) |
|
| 2 | isrhm.n | |- N = ( mulGrp ` S ) |
|
| 3 | dfrhm2 | |- RingHom = ( r e. Ring , s e. Ring |-> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) ) |
|
| 4 | 3 | elmpocl | |- ( F e. ( R RingHom S ) -> ( R e. Ring /\ S e. Ring ) ) |
| 5 | oveq12 | |- ( ( r = R /\ s = S ) -> ( r GrpHom s ) = ( R GrpHom S ) ) |
|
| 6 | fveq2 | |- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
|
| 7 | fveq2 | |- ( s = S -> ( mulGrp ` s ) = ( mulGrp ` S ) ) |
|
| 8 | 6 7 | oveqan12d | |- ( ( r = R /\ s = S ) -> ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) = ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
| 9 | 5 8 | ineq12d | |- ( ( r = R /\ s = S ) -> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
| 10 | ovex | |- ( R GrpHom S ) e. _V |
|
| 11 | 10 | inex1 | |- ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) e. _V |
| 12 | 9 3 11 | ovmpoa | |- ( ( R e. Ring /\ S e. Ring ) -> ( R RingHom S ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
| 13 | 12 | eleq2d | |- ( ( R e. Ring /\ S e. Ring ) -> ( F e. ( R RingHom S ) <-> F e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) |
| 14 | elin | |- ( F e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) <-> ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
|
| 15 | 1 2 | oveq12i | |- ( M MndHom N ) = ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) |
| 16 | 15 | eqcomi | |- ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) = ( M MndHom N ) |
| 17 | 16 | eleq2i | |- ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) <-> F e. ( M MndHom N ) ) |
| 18 | 17 | anbi2i | |- ( ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) <-> ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) |
| 19 | 14 18 | bitri | |- ( F e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) <-> ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) |
| 20 | 13 19 | bitrdi | |- ( ( R e. Ring /\ S e. Ring ) -> ( F e. ( R RingHom S ) <-> ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) ) |
| 21 | 4 20 | biadanii | |- ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) ) |