This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of Gleason p. 124. (Contributed by NM, 15-May-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recexpr | |- ( A e. P. -> E. x e. P. ( A .P. x ) = 1P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( z = w -> ( zw |
|
| 2 | 1 | anbi1d | |- ( z = w -> ( ( z( w |
| 3 | 2 | exbidv | |- ( z = w -> ( E. y ( zE. y ( w |
| 4 | 3 | cbvabv | |- { z | E. y ( z |
| 5 | 4 | reclem2pr | |- ( A e. P. -> { z | E. y ( z |
| 6 | 4 | reclem4pr | |- ( A e. P. -> ( A .P. { z | E. y ( z |
| 7 | oveq2 | |- ( x = { z | E. y ( z |
|
| 8 | 7 | eqeq1d | |- ( x = { z | E. y ( z |
| 9 | 8 | rspcev | |- ( ( { z | E. y ( z |
| 10 | 5 6 9 | syl2anc | |- ( A e. P. -> E. x e. P. ( A .P. x ) = 1P ) |