This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive fraction not in a positive real is an upper bound. Remark (1) of Gleason p. 122. (Contributed by NM, 25-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prub | |- ( ( ( A e. P. /\ B e. A ) /\ C e. Q. ) -> ( -. C e. A -> B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( B = C -> ( B e. A <-> C e. A ) ) |
|
| 2 | 1 | biimpcd | |- ( B e. A -> ( B = C -> C e. A ) ) |
| 3 | 2 | adantl | |- ( ( A e. P. /\ B e. A ) -> ( B = C -> C e. A ) ) |
| 4 | prcdnq | |- ( ( A e. P. /\ B e. A ) -> ( CC e. A ) ) |
|
| 5 | 3 4 | jaod | |- ( ( A e. P. /\ B e. A ) -> ( ( B = C \/ CC e. A ) ) |
| 6 | 5 | con3d | |- ( ( A e. P. /\ B e. A ) -> ( -. C e. A -> -. ( B = C \/ C |
| 7 | 6 | adantr | |- ( ( ( A e. P. /\ B e. A ) /\ C e. Q. ) -> ( -. C e. A -> -. ( B = C \/ C |
| 8 | elprnq | |- ( ( A e. P. /\ B e. A ) -> B e. Q. ) |
|
| 9 | ltsonq | |- |
|
| 10 | sotric | |- ( (( B-. ( B = C \/ C |
|
| 11 | 9 10 | mpan | |- ( ( B e. Q. /\ C e. Q. ) -> ( B-. ( B = C \/ C |
| 12 | 8 11 | sylan | |- ( ( ( A e. P. /\ B e. A ) /\ C e. Q. ) -> ( B-. ( B = C \/ C |
| 13 | 7 12 | sylibrd | |- ( ( ( A e. P. /\ B e. A ) /\ C e. Q. ) -> ( -. C e. A -> B |