This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulsrpr | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( [ <. A , B >. ] ~R .R [ <. C , D >. ] ~R ) = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi | |- ( ( A e. P. /\ B e. P. ) -> <. A , B >. e. ( P. X. P. ) ) |
|
| 2 | enrex | |- ~R e. _V |
|
| 3 | 2 | ecelqsi | |- ( <. A , B >. e. ( P. X. P. ) -> [ <. A , B >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 4 | 1 3 | syl | |- ( ( A e. P. /\ B e. P. ) -> [ <. A , B >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 5 | opelxpi | |- ( ( C e. P. /\ D e. P. ) -> <. C , D >. e. ( P. X. P. ) ) |
|
| 6 | 2 | ecelqsi | |- ( <. C , D >. e. ( P. X. P. ) -> [ <. C , D >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 7 | 5 6 | syl | |- ( ( C e. P. /\ D e. P. ) -> [ <. C , D >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 8 | 4 7 | anim12i | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( [ <. A , B >. ] ~R e. ( ( P. X. P. ) /. ~R ) /\ [ <. C , D >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) ) |
| 9 | eqid | |- [ <. A , B >. ] ~R = [ <. A , B >. ] ~R |
|
| 10 | eqid | |- [ <. C , D >. ] ~R = [ <. C , D >. ] ~R |
|
| 11 | 9 10 | pm3.2i | |- ( [ <. A , B >. ] ~R = [ <. A , B >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) |
| 12 | eqid | |- [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R |
|
| 13 | opeq12 | |- ( ( w = A /\ v = B ) -> <. w , v >. = <. A , B >. ) |
|
| 14 | 13 | eceq1d | |- ( ( w = A /\ v = B ) -> [ <. w , v >. ] ~R = [ <. A , B >. ] ~R ) |
| 15 | 14 | eqeq2d | |- ( ( w = A /\ v = B ) -> ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R <-> [ <. A , B >. ] ~R = [ <. A , B >. ] ~R ) ) |
| 16 | 15 | anbi1d | |- ( ( w = A /\ v = B ) -> ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) <-> ( [ <. A , B >. ] ~R = [ <. A , B >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) ) ) |
| 17 | simpl | |- ( ( w = A /\ v = B ) -> w = A ) |
|
| 18 | 17 | oveq1d | |- ( ( w = A /\ v = B ) -> ( w .P. C ) = ( A .P. C ) ) |
| 19 | simpr | |- ( ( w = A /\ v = B ) -> v = B ) |
|
| 20 | 19 | oveq1d | |- ( ( w = A /\ v = B ) -> ( v .P. D ) = ( B .P. D ) ) |
| 21 | 18 20 | oveq12d | |- ( ( w = A /\ v = B ) -> ( ( w .P. C ) +P. ( v .P. D ) ) = ( ( A .P. C ) +P. ( B .P. D ) ) ) |
| 22 | 17 | oveq1d | |- ( ( w = A /\ v = B ) -> ( w .P. D ) = ( A .P. D ) ) |
| 23 | 19 | oveq1d | |- ( ( w = A /\ v = B ) -> ( v .P. C ) = ( B .P. C ) ) |
| 24 | 22 23 | oveq12d | |- ( ( w = A /\ v = B ) -> ( ( w .P. D ) +P. ( v .P. C ) ) = ( ( A .P. D ) +P. ( B .P. C ) ) ) |
| 25 | 21 24 | opeq12d | |- ( ( w = A /\ v = B ) -> <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. = <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ) |
| 26 | 25 | eceq1d | |- ( ( w = A /\ v = B ) -> [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) |
| 27 | 26 | eqeq2d | |- ( ( w = A /\ v = B ) -> ( [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R <-> [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) ) |
| 28 | 16 27 | anbi12d | |- ( ( w = A /\ v = B ) -> ( ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R ) <-> ( ( [ <. A , B >. ] ~R = [ <. A , B >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) ) ) |
| 29 | 28 | spc2egv | |- ( ( A e. P. /\ B e. P. ) -> ( ( ( [ <. A , B >. ] ~R = [ <. A , B >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> E. w E. v ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R ) ) ) |
| 30 | opeq12 | |- ( ( u = C /\ t = D ) -> <. u , t >. = <. C , D >. ) |
|
| 31 | 30 | eceq1d | |- ( ( u = C /\ t = D ) -> [ <. u , t >. ] ~R = [ <. C , D >. ] ~R ) |
| 32 | 31 | eqeq2d | |- ( ( u = C /\ t = D ) -> ( [ <. C , D >. ] ~R = [ <. u , t >. ] ~R <-> [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) ) |
| 33 | 32 | anbi2d | |- ( ( u = C /\ t = D ) -> ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) <-> ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) ) ) |
| 34 | simpl | |- ( ( u = C /\ t = D ) -> u = C ) |
|
| 35 | 34 | oveq2d | |- ( ( u = C /\ t = D ) -> ( w .P. u ) = ( w .P. C ) ) |
| 36 | simpr | |- ( ( u = C /\ t = D ) -> t = D ) |
|
| 37 | 36 | oveq2d | |- ( ( u = C /\ t = D ) -> ( v .P. t ) = ( v .P. D ) ) |
| 38 | 35 37 | oveq12d | |- ( ( u = C /\ t = D ) -> ( ( w .P. u ) +P. ( v .P. t ) ) = ( ( w .P. C ) +P. ( v .P. D ) ) ) |
| 39 | 36 | oveq2d | |- ( ( u = C /\ t = D ) -> ( w .P. t ) = ( w .P. D ) ) |
| 40 | 34 | oveq2d | |- ( ( u = C /\ t = D ) -> ( v .P. u ) = ( v .P. C ) ) |
| 41 | 39 40 | oveq12d | |- ( ( u = C /\ t = D ) -> ( ( w .P. t ) +P. ( v .P. u ) ) = ( ( w .P. D ) +P. ( v .P. C ) ) ) |
| 42 | 38 41 | opeq12d | |- ( ( u = C /\ t = D ) -> <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. = <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ) |
| 43 | 42 | eceq1d | |- ( ( u = C /\ t = D ) -> [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R ) |
| 44 | 43 | eqeq2d | |- ( ( u = C /\ t = D ) -> ( [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R <-> [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R ) ) |
| 45 | 33 44 | anbi12d | |- ( ( u = C /\ t = D ) -> ( ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R ) ) ) |
| 46 | 45 | spc2egv | |- ( ( C e. P. /\ D e. P. ) -> ( ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R ) -> E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) ) |
| 47 | 46 | 2eximdv | |- ( ( C e. P. /\ D e. P. ) -> ( E. w E. v ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. C ) +P. ( v .P. D ) ) , ( ( w .P. D ) +P. ( v .P. C ) ) >. ] ~R ) -> E. w E. v E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) ) |
| 48 | 29 47 | sylan9 | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( ( ( [ <. A , B >. ] ~R = [ <. A , B >. ] ~R /\ [ <. C , D >. ] ~R = [ <. C , D >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> E. w E. v E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) ) |
| 49 | 11 12 48 | mp2ani | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> E. w E. v E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) |
| 50 | ecexg | |- ( ~R e. _V -> [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R e. _V ) |
|
| 51 | 2 50 | ax-mp | |- [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R e. _V |
| 52 | simp1 | |- ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> x = [ <. A , B >. ] ~R ) |
|
| 53 | 52 | eqeq1d | |- ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> ( x = [ <. w , v >. ] ~R <-> [ <. A , B >. ] ~R = [ <. w , v >. ] ~R ) ) |
| 54 | simp2 | |- ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> y = [ <. C , D >. ] ~R ) |
|
| 55 | 54 | eqeq1d | |- ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> ( y = [ <. u , t >. ] ~R <-> [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) ) |
| 56 | 53 55 | anbi12d | |- ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) <-> ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) ) ) |
| 57 | simp3 | |- ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) |
|
| 58 | 57 | eqeq1d | |- ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> ( z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R <-> [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) |
| 59 | 56 58 | anbi12d | |- ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> ( ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) ) |
| 60 | 59 | 4exbidv | |- ( ( x = [ <. A , B >. ] ~R /\ y = [ <. C , D >. ] ~R /\ z = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) -> ( E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) <-> E. w E. v E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) ) |
| 61 | mulsrmo | |- ( ( x e. ( ( P. X. P. ) /. ~R ) /\ y e. ( ( P. X. P. ) /. ~R ) ) -> E* z E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) |
|
| 62 | df-mr | |- .R = { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) } |
|
| 63 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 64 | 63 | eleq2i | |- ( x e. R. <-> x e. ( ( P. X. P. ) /. ~R ) ) |
| 65 | 63 | eleq2i | |- ( y e. R. <-> y e. ( ( P. X. P. ) /. ~R ) ) |
| 66 | 64 65 | anbi12i | |- ( ( x e. R. /\ y e. R. ) <-> ( x e. ( ( P. X. P. ) /. ~R ) /\ y e. ( ( P. X. P. ) /. ~R ) ) ) |
| 67 | 66 | anbi1i | |- ( ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) <-> ( ( x e. ( ( P. X. P. ) /. ~R ) /\ y e. ( ( P. X. P. ) /. ~R ) ) /\ E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) ) |
| 68 | 67 | oprabbii | |- { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) } = { <. <. x , y >. , z >. | ( ( x e. ( ( P. X. P. ) /. ~R ) /\ y e. ( ( P. X. P. ) /. ~R ) ) /\ E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) } |
| 69 | 62 68 | eqtri | |- .R = { <. <. x , y >. , z >. | ( ( x e. ( ( P. X. P. ) /. ~R ) /\ y e. ( ( P. X. P. ) /. ~R ) ) /\ E. w E. v E. u E. t ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , t >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) ) } |
| 70 | 60 61 69 | ovig | |- ( ( [ <. A , B >. ] ~R e. ( ( P. X. P. ) /. ~R ) /\ [ <. C , D >. ] ~R e. ( ( P. X. P. ) /. ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R e. _V ) -> ( E. w E. v E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) -> ( [ <. A , B >. ] ~R .R [ <. C , D >. ] ~R ) = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) ) |
| 71 | 51 70 | mp3an3 | |- ( ( [ <. A , B >. ] ~R e. ( ( P. X. P. ) /. ~R ) /\ [ <. C , D >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) -> ( E. w E. v E. u E. t ( ( [ <. A , B >. ] ~R = [ <. w , v >. ] ~R /\ [ <. C , D >. ] ~R = [ <. u , t >. ] ~R ) /\ [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R = [ <. ( ( w .P. u ) +P. ( v .P. t ) ) , ( ( w .P. t ) +P. ( v .P. u ) ) >. ] ~R ) -> ( [ <. A , B >. ] ~R .R [ <. C , D >. ] ~R ) = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) ) |
| 72 | 8 49 71 | sylc | |- ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) -> ( [ <. A , B >. ] ~R .R [ <. C , D >. ] ~R ) = [ <. ( ( A .P. C ) +P. ( B .P. D ) ) , ( ( A .P. D ) +P. ( B .P. C ) ) >. ] ~R ) |