This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of Gleason p. 124. (Contributed by NM, 19-Nov-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcompr | |- ( A .P. B ) = ( B .P. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpv | |- ( ( A e. P. /\ B e. P. ) -> ( A .P. B ) = { x | E. z e. A E. y e. B x = ( z .Q y ) } ) |
|
| 2 | mpv | |- ( ( B e. P. /\ A e. P. ) -> ( B .P. A ) = { x | E. y e. B E. z e. A x = ( y .Q z ) } ) |
|
| 3 | mulcomnq | |- ( y .Q z ) = ( z .Q y ) |
|
| 4 | 3 | eqeq2i | |- ( x = ( y .Q z ) <-> x = ( z .Q y ) ) |
| 5 | 4 | 2rexbii | |- ( E. y e. B E. z e. A x = ( y .Q z ) <-> E. y e. B E. z e. A x = ( z .Q y ) ) |
| 6 | rexcom | |- ( E. y e. B E. z e. A x = ( z .Q y ) <-> E. z e. A E. y e. B x = ( z .Q y ) ) |
|
| 7 | 5 6 | bitri | |- ( E. y e. B E. z e. A x = ( y .Q z ) <-> E. z e. A E. y e. B x = ( z .Q y ) ) |
| 8 | 7 | abbii | |- { x | E. y e. B E. z e. A x = ( y .Q z ) } = { x | E. z e. A E. y e. B x = ( z .Q y ) } |
| 9 | 2 8 | eqtrdi | |- ( ( B e. P. /\ A e. P. ) -> ( B .P. A ) = { x | E. z e. A E. y e. B x = ( z .Q y ) } ) |
| 10 | 9 | ancoms | |- ( ( A e. P. /\ B e. P. ) -> ( B .P. A ) = { x | E. z e. A E. y e. B x = ( z .Q y ) } ) |
| 11 | 1 10 | eqtr4d | |- ( ( A e. P. /\ B e. P. ) -> ( A .P. B ) = ( B .P. A ) ) |
| 12 | dmmp | |- dom .P. = ( P. X. P. ) |
|
| 13 | 12 | ndmovcom | |- ( -. ( A e. P. /\ B e. P. ) -> ( A .P. B ) = ( B .P. A ) ) |
| 14 | 11 13 | pm2.61i | |- ( A .P. B ) = ( B .P. A ) |