This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of Gleason p. 124. (Contributed by NM, 2-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | distrpr | |- ( A .P. ( B +P. C ) ) = ( ( A .P. B ) +P. ( A .P. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distrlem1pr | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( A .P. ( B +P. C ) ) C_ ( ( A .P. B ) +P. ( A .P. C ) ) ) |
|
| 2 | distrlem5pr | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( ( A .P. B ) +P. ( A .P. C ) ) C_ ( A .P. ( B +P. C ) ) ) |
|
| 3 | 1 2 | eqssd | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( A .P. ( B +P. C ) ) = ( ( A .P. B ) +P. ( A .P. C ) ) ) |
| 4 | dmplp | |- dom +P. = ( P. X. P. ) |
|
| 5 | 0npr | |- -. (/) e. P. |
|
| 6 | dmmp | |- dom .P. = ( P. X. P. ) |
|
| 7 | 4 5 6 | ndmovdistr | |- ( -. ( A e. P. /\ B e. P. /\ C e. P. ) -> ( A .P. ( B +P. C ) ) = ( ( A .P. B ) +P. ( A .P. C ) ) ) |
| 8 | 3 7 | pm2.61i | |- ( A .P. ( B +P. C ) ) = ( ( A .P. B ) +P. ( A .P. C ) ) |