This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of two ratios. Theorem I.14 of Apostol p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrdir.b | |- B = ( Base ` R ) |
|
| dvrdir.u | |- U = ( Unit ` R ) |
||
| dvrdir.p | |- .+ = ( +g ` R ) |
||
| dvrdir.t | |- ./ = ( /r ` R ) |
||
| rdivmuldivd.p | |- .x. = ( .r ` R ) |
||
| rdivmuldivd.r | |- ( ph -> R e. CRing ) |
||
| rdivmuldivd.a | |- ( ph -> X e. B ) |
||
| rdivmuldivd.b | |- ( ph -> Y e. U ) |
||
| rdivmuldivd.c | |- ( ph -> Z e. B ) |
||
| rdivmuldivd.d | |- ( ph -> W e. U ) |
||
| Assertion | rdivmuldivd | |- ( ph -> ( ( X ./ Y ) .x. ( Z ./ W ) ) = ( ( X .x. Z ) ./ ( Y .x. W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrdir.b | |- B = ( Base ` R ) |
|
| 2 | dvrdir.u | |- U = ( Unit ` R ) |
|
| 3 | dvrdir.p | |- .+ = ( +g ` R ) |
|
| 4 | dvrdir.t | |- ./ = ( /r ` R ) |
|
| 5 | rdivmuldivd.p | |- .x. = ( .r ` R ) |
|
| 6 | rdivmuldivd.r | |- ( ph -> R e. CRing ) |
|
| 7 | rdivmuldivd.a | |- ( ph -> X e. B ) |
|
| 8 | rdivmuldivd.b | |- ( ph -> Y e. U ) |
|
| 9 | rdivmuldivd.c | |- ( ph -> Z e. B ) |
|
| 10 | rdivmuldivd.d | |- ( ph -> W e. U ) |
|
| 11 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 12 | 1 5 2 11 4 | dvrval | |- ( ( X e. B /\ Y e. U ) -> ( X ./ Y ) = ( X .x. ( ( invr ` R ) ` Y ) ) ) |
| 13 | 12 | oveq1d | |- ( ( X e. B /\ Y e. U ) -> ( ( X ./ Y ) .x. ( Z ./ W ) ) = ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. ( Z ./ W ) ) ) |
| 14 | 7 8 13 | syl2anc | |- ( ph -> ( ( X ./ Y ) .x. ( Z ./ W ) ) = ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. ( Z ./ W ) ) ) |
| 15 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 16 | 6 15 | syl | |- ( ph -> R e. Ring ) |
| 17 | 1 2 | unitss | |- U C_ B |
| 18 | 2 11 | unitinvcl | |- ( ( R e. Ring /\ Y e. U ) -> ( ( invr ` R ) ` Y ) e. U ) |
| 19 | 16 8 18 | syl2anc | |- ( ph -> ( ( invr ` R ) ` Y ) e. U ) |
| 20 | 17 19 | sselid | |- ( ph -> ( ( invr ` R ) ` Y ) e. B ) |
| 21 | 1 2 4 | dvrcl | |- ( ( R e. Ring /\ Z e. B /\ W e. U ) -> ( Z ./ W ) e. B ) |
| 22 | 16 9 10 21 | syl3anc | |- ( ph -> ( Z ./ W ) e. B ) |
| 23 | 1 5 | ringass | |- ( ( R e. Ring /\ ( X e. B /\ ( ( invr ` R ) ` Y ) e. B /\ ( Z ./ W ) e. B ) ) -> ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. ( Z ./ W ) ) = ( X .x. ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) ) ) |
| 24 | 16 7 20 22 23 | syl13anc | |- ( ph -> ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. ( Z ./ W ) ) = ( X .x. ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) ) ) |
| 25 | 1 5 | crngcom | |- ( ( R e. CRing /\ ( ( invr ` R ) ` Y ) e. B /\ ( Z ./ W ) e. B ) -> ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) = ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) |
| 26 | 6 20 22 25 | syl3anc | |- ( ph -> ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) = ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) |
| 27 | 26 | oveq2d | |- ( ph -> ( X .x. ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) ) = ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 28 | 14 24 27 | 3eqtrd | |- ( ph -> ( ( X ./ Y ) .x. ( Z ./ W ) ) = ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 29 | eqid | |- ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U ) |
|
| 30 | 2 29 | unitgrp | |- ( R e. Ring -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
| 31 | 16 30 | syl | |- ( ph -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
| 32 | 2 29 | unitgrpbas | |- U = ( Base ` ( ( mulGrp ` R ) |`s U ) ) |
| 33 | eqid | |- ( +g ` ( ( mulGrp ` R ) |`s U ) ) = ( +g ` ( ( mulGrp ` R ) |`s U ) ) |
|
| 34 | 2 29 11 | invrfval | |- ( invr ` R ) = ( invg ` ( ( mulGrp ` R ) |`s U ) ) |
| 35 | 32 33 34 | grpinvadd | |- ( ( ( ( mulGrp ` R ) |`s U ) e. Grp /\ Y e. U /\ W e. U ) -> ( ( invr ` R ) ` ( Y ( +g ` ( ( mulGrp ` R ) |`s U ) ) W ) ) = ( ( ( invr ` R ) ` W ) ( +g ` ( ( mulGrp ` R ) |`s U ) ) ( ( invr ` R ) ` Y ) ) ) |
| 36 | 31 8 10 35 | syl3anc | |- ( ph -> ( ( invr ` R ) ` ( Y ( +g ` ( ( mulGrp ` R ) |`s U ) ) W ) ) = ( ( ( invr ` R ) ` W ) ( +g ` ( ( mulGrp ` R ) |`s U ) ) ( ( invr ` R ) ` Y ) ) ) |
| 37 | eqid | |- ( mulGrp ` ( R |`s U ) ) = ( mulGrp ` ( R |`s U ) ) |
|
| 38 | 2 | fvexi | |- U e. _V |
| 39 | eqid | |- ( R |`s U ) = ( R |`s U ) |
|
| 40 | 39 5 | ressmulr | |- ( U e. _V -> .x. = ( .r ` ( R |`s U ) ) ) |
| 41 | 38 40 | ax-mp | |- .x. = ( .r ` ( R |`s U ) ) |
| 42 | 37 41 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` ( R |`s U ) ) ) |
| 43 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 44 | 39 43 | mgpress | |- ( ( R e. Ring /\ U e. _V ) -> ( ( mulGrp ` R ) |`s U ) = ( mulGrp ` ( R |`s U ) ) ) |
| 45 | 16 38 44 | sylancl | |- ( ph -> ( ( mulGrp ` R ) |`s U ) = ( mulGrp ` ( R |`s U ) ) ) |
| 46 | 45 | fveq2d | |- ( ph -> ( +g ` ( ( mulGrp ` R ) |`s U ) ) = ( +g ` ( mulGrp ` ( R |`s U ) ) ) ) |
| 47 | 42 46 | eqtr4id | |- ( ph -> .x. = ( +g ` ( ( mulGrp ` R ) |`s U ) ) ) |
| 48 | 47 | oveqd | |- ( ph -> ( Y .x. W ) = ( Y ( +g ` ( ( mulGrp ` R ) |`s U ) ) W ) ) |
| 49 | 48 | fveq2d | |- ( ph -> ( ( invr ` R ) ` ( Y .x. W ) ) = ( ( invr ` R ) ` ( Y ( +g ` ( ( mulGrp ` R ) |`s U ) ) W ) ) ) |
| 50 | 47 | oveqd | |- ( ph -> ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) = ( ( ( invr ` R ) ` W ) ( +g ` ( ( mulGrp ` R ) |`s U ) ) ( ( invr ` R ) ` Y ) ) ) |
| 51 | 36 49 50 | 3eqtr4d | |- ( ph -> ( ( invr ` R ) ` ( Y .x. W ) ) = ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) |
| 52 | 51 | oveq2d | |- ( ph -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` ( Y .x. W ) ) ) = ( ( X .x. Z ) .x. ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 53 | 1 5 | ringcl | |- ( ( R e. Ring /\ X e. B /\ Z e. B ) -> ( X .x. Z ) e. B ) |
| 54 | 16 7 9 53 | syl3anc | |- ( ph -> ( X .x. Z ) e. B ) |
| 55 | 2 5 | unitmulcl | |- ( ( R e. Ring /\ Y e. U /\ W e. U ) -> ( Y .x. W ) e. U ) |
| 56 | 16 8 10 55 | syl3anc | |- ( ph -> ( Y .x. W ) e. U ) |
| 57 | 1 5 2 11 4 | dvrval | |- ( ( ( X .x. Z ) e. B /\ ( Y .x. W ) e. U ) -> ( ( X .x. Z ) ./ ( Y .x. W ) ) = ( ( X .x. Z ) .x. ( ( invr ` R ) ` ( Y .x. W ) ) ) ) |
| 58 | 54 56 57 | syl2anc | |- ( ph -> ( ( X .x. Z ) ./ ( Y .x. W ) ) = ( ( X .x. Z ) .x. ( ( invr ` R ) ` ( Y .x. W ) ) ) ) |
| 59 | 2 11 | unitinvcl | |- ( ( R e. Ring /\ W e. U ) -> ( ( invr ` R ) ` W ) e. U ) |
| 60 | 16 10 59 | syl2anc | |- ( ph -> ( ( invr ` R ) ` W ) e. U ) |
| 61 | 17 60 | sselid | |- ( ph -> ( ( invr ` R ) ` W ) e. B ) |
| 62 | 1 5 | ringass | |- ( ( R e. Ring /\ ( X e. B /\ Z e. B /\ ( ( invr ` R ) ` W ) e. B ) ) -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) = ( X .x. ( Z .x. ( ( invr ` R ) ` W ) ) ) ) |
| 63 | 16 7 9 61 62 | syl13anc | |- ( ph -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) = ( X .x. ( Z .x. ( ( invr ` R ) ` W ) ) ) ) |
| 64 | 1 5 2 11 4 | dvrval | |- ( ( Z e. B /\ W e. U ) -> ( Z ./ W ) = ( Z .x. ( ( invr ` R ) ` W ) ) ) |
| 65 | 9 10 64 | syl2anc | |- ( ph -> ( Z ./ W ) = ( Z .x. ( ( invr ` R ) ` W ) ) ) |
| 66 | 65 | oveq2d | |- ( ph -> ( X .x. ( Z ./ W ) ) = ( X .x. ( Z .x. ( ( invr ` R ) ` W ) ) ) ) |
| 67 | 63 66 | eqtr4d | |- ( ph -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) = ( X .x. ( Z ./ W ) ) ) |
| 68 | 67 | oveq1d | |- ( ph -> ( ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( ( X .x. ( Z ./ W ) ) .x. ( ( invr ` R ) ` Y ) ) ) |
| 69 | 1 5 | ringass | |- ( ( R e. Ring /\ ( ( X .x. Z ) e. B /\ ( ( invr ` R ) ` W ) e. B /\ ( ( invr ` R ) ` Y ) e. B ) ) -> ( ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( ( X .x. Z ) .x. ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 70 | 16 54 61 20 69 | syl13anc | |- ( ph -> ( ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( ( X .x. Z ) .x. ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 71 | 1 5 | ringass | |- ( ( R e. Ring /\ ( X e. B /\ ( Z ./ W ) e. B /\ ( ( invr ` R ) ` Y ) e. B ) ) -> ( ( X .x. ( Z ./ W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 72 | 16 7 22 20 71 | syl13anc | |- ( ph -> ( ( X .x. ( Z ./ W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 73 | 68 70 72 | 3eqtr3rd | |- ( ph -> ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) = ( ( X .x. Z ) .x. ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 74 | 52 58 73 | 3eqtr4rd | |- ( ph -> ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) = ( ( X .x. Z ) ./ ( Y .x. W ) ) ) |
| 75 | 28 74 | eqtrd | |- ( ph -> ( ( X ./ Y ) .x. ( Z ./ W ) ) = ( ( X .x. Z ) ./ ( Y .x. W ) ) ) |