This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write the inverse function in terms of division. (Contributed by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringinvdv.b | |- B = ( Base ` R ) |
|
| ringinvdv.u | |- U = ( Unit ` R ) |
||
| ringinvdv.d | |- ./ = ( /r ` R ) |
||
| ringinvdv.o | |- .1. = ( 1r ` R ) |
||
| ringinvdv.i | |- I = ( invr ` R ) |
||
| Assertion | ringinvdv | |- ( ( R e. Ring /\ X e. U ) -> ( I ` X ) = ( .1. ./ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringinvdv.b | |- B = ( Base ` R ) |
|
| 2 | ringinvdv.u | |- U = ( Unit ` R ) |
|
| 3 | ringinvdv.d | |- ./ = ( /r ` R ) |
|
| 4 | ringinvdv.o | |- .1. = ( 1r ` R ) |
|
| 5 | ringinvdv.i | |- I = ( invr ` R ) |
|
| 6 | 1 4 | ringidcl | |- ( R e. Ring -> .1. e. B ) |
| 7 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 8 | 1 7 2 5 3 | dvrval | |- ( ( .1. e. B /\ X e. U ) -> ( .1. ./ X ) = ( .1. ( .r ` R ) ( I ` X ) ) ) |
| 9 | 6 8 | sylan | |- ( ( R e. Ring /\ X e. U ) -> ( .1. ./ X ) = ( .1. ( .r ` R ) ( I ` X ) ) ) |
| 10 | 2 5 1 | ringinvcl | |- ( ( R e. Ring /\ X e. U ) -> ( I ` X ) e. B ) |
| 11 | 1 7 4 | ringlidm | |- ( ( R e. Ring /\ ( I ` X ) e. B ) -> ( .1. ( .r ` R ) ( I ` X ) ) = ( I ` X ) ) |
| 12 | 10 11 | syldan | |- ( ( R e. Ring /\ X e. U ) -> ( .1. ( .r ` R ) ( I ` X ) ) = ( I ` X ) ) |
| 13 | 9 12 | eqtr2d | |- ( ( R e. Ring /\ X e. U ) -> ( I ` X ) = ( .1. ./ X ) ) |