This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014) (Revised by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrval.b | |- B = ( Base ` R ) |
|
| dvrval.t | |- .x. = ( .r ` R ) |
||
| dvrval.u | |- U = ( Unit ` R ) |
||
| dvrval.i | |- I = ( invr ` R ) |
||
| dvrval.d | |- ./ = ( /r ` R ) |
||
| Assertion | dvrval | |- ( ( X e. B /\ Y e. U ) -> ( X ./ Y ) = ( X .x. ( I ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrval.b | |- B = ( Base ` R ) |
|
| 2 | dvrval.t | |- .x. = ( .r ` R ) |
|
| 3 | dvrval.u | |- U = ( Unit ` R ) |
|
| 4 | dvrval.i | |- I = ( invr ` R ) |
|
| 5 | dvrval.d | |- ./ = ( /r ` R ) |
|
| 6 | oveq1 | |- ( x = X -> ( x .x. ( I ` y ) ) = ( X .x. ( I ` y ) ) ) |
|
| 7 | fveq2 | |- ( y = Y -> ( I ` y ) = ( I ` Y ) ) |
|
| 8 | 7 | oveq2d | |- ( y = Y -> ( X .x. ( I ` y ) ) = ( X .x. ( I ` Y ) ) ) |
| 9 | 1 2 3 4 5 | dvrfval | |- ./ = ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) |
| 10 | ovex | |- ( X .x. ( I ` Y ) ) e. _V |
|
| 11 | 6 8 9 10 | ovmpo | |- ( ( X e. B /\ Y e. U ) -> ( X ./ Y ) = ( X .x. ( I ` Y ) ) ) |