This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of two ratios. Theorem I.14 of Apostol p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrdir.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvrdir.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| dvrdir.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| dvrdir.t | ⊢ / = ( /r ‘ 𝑅 ) | ||
| rdivmuldivd.p | ⊢ · = ( .r ‘ 𝑅 ) | ||
| rdivmuldivd.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| rdivmuldivd.a | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| rdivmuldivd.b | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| rdivmuldivd.c | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| rdivmuldivd.d | ⊢ ( 𝜑 → 𝑊 ∈ 𝑈 ) | ||
| Assertion | rdivmuldivd | ⊢ ( 𝜑 → ( ( 𝑋 / 𝑌 ) · ( 𝑍 / 𝑊 ) ) = ( ( 𝑋 · 𝑍 ) / ( 𝑌 · 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrdir.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvrdir.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | dvrdir.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | dvrdir.t | ⊢ / = ( /r ‘ 𝑅 ) | |
| 5 | rdivmuldivd.p | ⊢ · = ( .r ‘ 𝑅 ) | |
| 6 | rdivmuldivd.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 7 | rdivmuldivd.a | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | rdivmuldivd.b | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 9 | rdivmuldivd.c | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 10 | rdivmuldivd.d | ⊢ ( 𝜑 → 𝑊 ∈ 𝑈 ) | |
| 11 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 12 | 1 5 2 11 4 | dvrval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 13 | 12 | oveq1d | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 / 𝑌 ) · ( 𝑍 / 𝑊 ) ) = ( ( 𝑋 · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) · ( 𝑍 / 𝑊 ) ) ) |
| 14 | 7 8 13 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 / 𝑌 ) · ( 𝑍 / 𝑊 ) ) = ( ( 𝑋 · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) · ( 𝑍 / 𝑊 ) ) ) |
| 15 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 16 | 6 15 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 17 | 1 2 | unitss | ⊢ 𝑈 ⊆ 𝐵 |
| 18 | 2 11 | unitinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝑈 ) |
| 19 | 16 8 18 | syl2anc | ⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝑈 ) |
| 20 | 17 19 | sselid | ⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 21 | 1 2 4 | dvrcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝑈 ) → ( 𝑍 / 𝑊 ) ∈ 𝐵 ) |
| 22 | 16 9 10 21 | syl3anc | ⊢ ( 𝜑 → ( 𝑍 / 𝑊 ) ∈ 𝐵 ) |
| 23 | 1 5 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 / 𝑊 ) ∈ 𝐵 ) ) → ( ( 𝑋 · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) · ( 𝑍 / 𝑊 ) ) = ( 𝑋 · ( ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) · ( 𝑍 / 𝑊 ) ) ) ) |
| 24 | 16 7 20 22 23 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) · ( 𝑍 / 𝑊 ) ) = ( 𝑋 · ( ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) · ( 𝑍 / 𝑊 ) ) ) ) |
| 25 | 1 5 | crngcom | ⊢ ( ( 𝑅 ∈ CRing ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 / 𝑊 ) ∈ 𝐵 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) · ( 𝑍 / 𝑊 ) ) = ( ( 𝑍 / 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 26 | 6 20 22 25 | syl3anc | ⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) · ( 𝑍 / 𝑊 ) ) = ( ( 𝑍 / 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 27 | 26 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 · ( ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) · ( 𝑍 / 𝑊 ) ) ) = ( 𝑋 · ( ( 𝑍 / 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 28 | 14 24 27 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 / 𝑌 ) · ( 𝑍 / 𝑊 ) ) = ( 𝑋 · ( ( 𝑍 / 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 29 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | |
| 30 | 2 29 | unitgrp | ⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ) |
| 31 | 16 30 | syl | ⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ) |
| 32 | 2 29 | unitgrpbas | ⊢ 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 33 | eqid | ⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) | |
| 34 | 2 29 11 | invrfval | ⊢ ( invr ‘ 𝑅 ) = ( invg ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 35 | 32 33 34 | grpinvadd | ⊢ ( ( ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ∧ 𝑌 ∈ 𝑈 ∧ 𝑊 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ ( 𝑌 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) 𝑊 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 36 | 31 8 10 35 | syl3anc | ⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ ( 𝑌 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) 𝑊 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 37 | eqid | ⊢ ( mulGrp ‘ ( 𝑅 ↾s 𝑈 ) ) = ( mulGrp ‘ ( 𝑅 ↾s 𝑈 ) ) | |
| 38 | 2 | fvexi | ⊢ 𝑈 ∈ V |
| 39 | eqid | ⊢ ( 𝑅 ↾s 𝑈 ) = ( 𝑅 ↾s 𝑈 ) | |
| 40 | 39 5 | ressmulr | ⊢ ( 𝑈 ∈ V → · = ( .r ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 41 | 38 40 | ax-mp | ⊢ · = ( .r ‘ ( 𝑅 ↾s 𝑈 ) ) |
| 42 | 37 41 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 43 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 44 | 39 43 | mgpress | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ V ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) = ( mulGrp ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 45 | 16 38 44 | sylancl | ⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) = ( mulGrp ‘ ( 𝑅 ↾s 𝑈 ) ) ) |
| 46 | 45 | fveq2d | ⊢ ( 𝜑 → ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) = ( +g ‘ ( mulGrp ‘ ( 𝑅 ↾s 𝑈 ) ) ) ) |
| 47 | 42 46 | eqtr4id | ⊢ ( 𝜑 → · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) |
| 48 | 47 | oveqd | ⊢ ( 𝜑 → ( 𝑌 · 𝑊 ) = ( 𝑌 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) 𝑊 ) ) |
| 49 | 48 | fveq2d | ⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ ( 𝑌 · 𝑊 ) ) = ( ( invr ‘ 𝑅 ) ‘ ( 𝑌 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) 𝑊 ) ) ) |
| 50 | 47 | oveqd | ⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 51 | 36 49 50 | 3eqtr4d | ⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ ( 𝑌 · 𝑊 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 52 | 51 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ ( 𝑌 · 𝑊 ) ) ) = ( ( 𝑋 · 𝑍 ) · ( ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 53 | 1 5 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 · 𝑍 ) ∈ 𝐵 ) |
| 54 | 16 7 9 53 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) ∈ 𝐵 ) |
| 55 | 2 5 | unitmulcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ∧ 𝑊 ∈ 𝑈 ) → ( 𝑌 · 𝑊 ) ∈ 𝑈 ) |
| 56 | 16 8 10 55 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 · 𝑊 ) ∈ 𝑈 ) |
| 57 | 1 5 2 11 4 | dvrval | ⊢ ( ( ( 𝑋 · 𝑍 ) ∈ 𝐵 ∧ ( 𝑌 · 𝑊 ) ∈ 𝑈 ) → ( ( 𝑋 · 𝑍 ) / ( 𝑌 · 𝑊 ) ) = ( ( 𝑋 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ ( 𝑌 · 𝑊 ) ) ) ) |
| 58 | 54 56 57 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) / ( 𝑌 · 𝑊 ) ) = ( ( 𝑋 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ ( 𝑌 · 𝑊 ) ) ) ) |
| 59 | 2 11 | unitinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑊 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ∈ 𝑈 ) |
| 60 | 16 10 59 | syl2anc | ⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ∈ 𝑈 ) |
| 61 | 17 60 | sselid | ⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ∈ 𝐵 ) |
| 62 | 1 5 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ∈ 𝐵 ) ) → ( ( 𝑋 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ) = ( 𝑋 · ( 𝑍 · ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ) ) ) |
| 63 | 16 7 9 61 62 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ) = ( 𝑋 · ( 𝑍 · ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ) ) ) |
| 64 | 1 5 2 11 4 | dvrval | ⊢ ( ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝑈 ) → ( 𝑍 / 𝑊 ) = ( 𝑍 · ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ) ) |
| 65 | 9 10 64 | syl2anc | ⊢ ( 𝜑 → ( 𝑍 / 𝑊 ) = ( 𝑍 · ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ) ) |
| 66 | 65 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑍 / 𝑊 ) ) = ( 𝑋 · ( 𝑍 · ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ) ) ) |
| 67 | 63 66 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ) = ( 𝑋 · ( 𝑍 / 𝑊 ) ) ) |
| 68 | 67 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑋 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( ( 𝑋 · ( 𝑍 / 𝑊 ) ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 69 | 1 5 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑋 · 𝑍 ) ∈ 𝐵 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ∈ 𝐵 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) ) → ( ( ( 𝑋 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( ( 𝑋 · 𝑍 ) · ( ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 70 | 16 54 61 20 69 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝑋 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( ( 𝑋 · 𝑍 ) · ( ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 71 | 1 5 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑍 / 𝑊 ) ∈ 𝐵 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) ) → ( ( 𝑋 · ( 𝑍 / 𝑊 ) ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 𝑋 · ( ( 𝑍 / 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 72 | 16 7 22 20 71 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑍 / 𝑊 ) ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 𝑋 · ( ( 𝑍 / 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 73 | 68 70 72 | 3eqtr3rd | ⊢ ( 𝜑 → ( 𝑋 · ( ( 𝑍 / 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) = ( ( 𝑋 · 𝑍 ) · ( ( ( invr ‘ 𝑅 ) ‘ 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 74 | 52 58 73 | 3eqtr4rd | ⊢ ( 𝜑 → ( 𝑋 · ( ( 𝑍 / 𝑊 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) = ( ( 𝑋 · 𝑍 ) / ( 𝑌 · 𝑊 ) ) ) |
| 75 | 28 74 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 / 𝑌 ) · ( 𝑍 / 𝑊 ) ) = ( ( 𝑋 · 𝑍 ) / ( 𝑌 · 𝑊 ) ) ) |