This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitmulcl.1 | |- U = ( Unit ` R ) |
|
| unitmulcl.2 | |- .x. = ( .r ` R ) |
||
| Assertion | unitmulcl | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitmulcl.1 | |- U = ( Unit ` R ) |
|
| 2 | unitmulcl.2 | |- .x. = ( .r ` R ) |
|
| 3 | simp1 | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> R e. Ring ) |
|
| 4 | simp3 | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> Y e. U ) |
|
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 5 1 | unitcl | |- ( Y e. U -> Y e. ( Base ` R ) ) |
| 7 | 4 6 | syl | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> Y e. ( Base ` R ) ) |
| 8 | simp2 | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> X e. U ) |
|
| 9 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 10 | eqid | |- ( ||r ` R ) = ( ||r ` R ) |
|
| 11 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 12 | eqid | |- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
|
| 13 | 1 9 10 11 12 | isunit | |- ( X e. U <-> ( X ( ||r ` R ) ( 1r ` R ) /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 14 | 8 13 | sylib | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X ( ||r ` R ) ( 1r ` R ) /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 15 | 14 | simpld | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> X ( ||r ` R ) ( 1r ` R ) ) |
| 16 | 5 10 2 | dvdsrmul1 | |- ( ( R e. Ring /\ Y e. ( Base ` R ) /\ X ( ||r ` R ) ( 1r ` R ) ) -> ( X .x. Y ) ( ||r ` R ) ( ( 1r ` R ) .x. Y ) ) |
| 17 | 3 7 15 16 | syl3anc | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) ( ||r ` R ) ( ( 1r ` R ) .x. Y ) ) |
| 18 | 5 2 9 | ringlidm | |- ( ( R e. Ring /\ Y e. ( Base ` R ) ) -> ( ( 1r ` R ) .x. Y ) = Y ) |
| 19 | 3 7 18 | syl2anc | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( ( 1r ` R ) .x. Y ) = Y ) |
| 20 | 17 19 | breqtrd | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) ( ||r ` R ) Y ) |
| 21 | 1 9 10 11 12 | isunit | |- ( Y e. U <-> ( Y ( ||r ` R ) ( 1r ` R ) /\ Y ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 22 | 4 21 | sylib | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( Y ( ||r ` R ) ( 1r ` R ) /\ Y ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 23 | 22 | simpld | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> Y ( ||r ` R ) ( 1r ` R ) ) |
| 24 | 5 10 | dvdsrtr | |- ( ( R e. Ring /\ ( X .x. Y ) ( ||r ` R ) Y /\ Y ( ||r ` R ) ( 1r ` R ) ) -> ( X .x. Y ) ( ||r ` R ) ( 1r ` R ) ) |
| 25 | 3 20 23 24 | syl3anc | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) ( ||r ` R ) ( 1r ` R ) ) |
| 26 | 11 | opprring | |- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 27 | 3 26 | syl | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( oppR ` R ) e. Ring ) |
| 28 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 29 | 5 2 11 28 | opprmul | |- ( Y ( .r ` ( oppR ` R ) ) X ) = ( X .x. Y ) |
| 30 | 5 1 | unitcl | |- ( X e. U -> X e. ( Base ` R ) ) |
| 31 | 8 30 | syl | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> X e. ( Base ` R ) ) |
| 32 | 22 | simprd | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> Y ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 33 | 11 5 | opprbas | |- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 34 | 33 12 28 | dvdsrmul1 | |- ( ( ( oppR ` R ) e. Ring /\ X e. ( Base ` R ) /\ Y ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) -> ( Y ( .r ` ( oppR ` R ) ) X ) ( ||r ` ( oppR ` R ) ) ( ( 1r ` R ) ( .r ` ( oppR ` R ) ) X ) ) |
| 35 | 27 31 32 34 | syl3anc | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( Y ( .r ` ( oppR ` R ) ) X ) ( ||r ` ( oppR ` R ) ) ( ( 1r ` R ) ( .r ` ( oppR ` R ) ) X ) ) |
| 36 | 5 2 11 28 | opprmul | |- ( ( 1r ` R ) ( .r ` ( oppR ` R ) ) X ) = ( X .x. ( 1r ` R ) ) |
| 37 | 5 2 9 | ringridm | |- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> ( X .x. ( 1r ` R ) ) = X ) |
| 38 | 3 31 37 | syl2anc | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. ( 1r ` R ) ) = X ) |
| 39 | 36 38 | eqtrid | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( ( 1r ` R ) ( .r ` ( oppR ` R ) ) X ) = X ) |
| 40 | 35 39 | breqtrd | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( Y ( .r ` ( oppR ` R ) ) X ) ( ||r ` ( oppR ` R ) ) X ) |
| 41 | 29 40 | eqbrtrrid | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) ( ||r ` ( oppR ` R ) ) X ) |
| 42 | 14 | simprd | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 43 | 33 12 | dvdsrtr | |- ( ( ( oppR ` R ) e. Ring /\ ( X .x. Y ) ( ||r ` ( oppR ` R ) ) X /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) -> ( X .x. Y ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 44 | 27 41 42 43 | syl3anc | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 45 | 1 9 10 11 12 | isunit | |- ( ( X .x. Y ) e. U <-> ( ( X .x. Y ) ( ||r ` R ) ( 1r ` R ) /\ ( X .x. Y ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 46 | 25 44 45 | sylanbrc | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) e. U ) |