This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankr1id | |- ( A e. dom R1 <-> ( rank ` ( R1 ` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- ( R1 ` A ) C_ ( R1 ` A ) |
|
| 2 | fvex | |- ( R1 ` A ) e. _V |
|
| 3 | 2 | pwid | |- ( R1 ` A ) e. ~P ( R1 ` A ) |
| 4 | r1sucg | |- ( A e. dom R1 -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |
|
| 5 | 3 4 | eleqtrrid | |- ( A e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc A ) ) |
| 6 | r1elwf | |- ( ( R1 ` A ) e. ( R1 ` suc A ) -> ( R1 ` A ) e. U. ( R1 " On ) ) |
|
| 7 | 5 6 | syl | |- ( A e. dom R1 -> ( R1 ` A ) e. U. ( R1 " On ) ) |
| 8 | rankr1bg | |- ( ( ( R1 ` A ) e. U. ( R1 " On ) /\ A e. dom R1 ) -> ( ( R1 ` A ) C_ ( R1 ` A ) <-> ( rank ` ( R1 ` A ) ) C_ A ) ) |
|
| 9 | 7 8 | mpancom | |- ( A e. dom R1 -> ( ( R1 ` A ) C_ ( R1 ` A ) <-> ( rank ` ( R1 ` A ) ) C_ A ) ) |
| 10 | 1 9 | mpbii | |- ( A e. dom R1 -> ( rank ` ( R1 ` A ) ) C_ A ) |
| 11 | rankonid | |- ( A e. dom R1 <-> ( rank ` A ) = A ) |
|
| 12 | 11 | biimpi | |- ( A e. dom R1 -> ( rank ` A ) = A ) |
| 13 | onssr1 | |- ( A e. dom R1 -> A C_ ( R1 ` A ) ) |
|
| 14 | rankssb | |- ( ( R1 ` A ) e. U. ( R1 " On ) -> ( A C_ ( R1 ` A ) -> ( rank ` A ) C_ ( rank ` ( R1 ` A ) ) ) ) |
|
| 15 | 7 13 14 | sylc | |- ( A e. dom R1 -> ( rank ` A ) C_ ( rank ` ( R1 ` A ) ) ) |
| 16 | 12 15 | eqsstrrd | |- ( A e. dom R1 -> A C_ ( rank ` ( R1 ` A ) ) ) |
| 17 | 10 16 | eqssd | |- ( A e. dom R1 -> ( rank ` ( R1 ` A ) ) = A ) |
| 18 | id | |- ( ( rank ` ( R1 ` A ) ) = A -> ( rank ` ( R1 ` A ) ) = A ) |
|
| 19 | rankdmr1 | |- ( rank ` ( R1 ` A ) ) e. dom R1 |
|
| 20 | 18 19 | eqeltrrdi | |- ( ( rank ` ( R1 ` A ) ) = A -> A e. dom R1 ) |
| 21 | 17 20 | impbii | |- ( A e. dom R1 <-> ( rank ` ( R1 ` A ) ) = A ) |