This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a union. Part of Exercise 4 of Kunen p. 107. (Contributed by NM, 15-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankuni | |- ( rank ` U. A ) = U. ( rank ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq | |- ( x = A -> U. x = U. A ) |
|
| 2 | 1 | fveq2d | |- ( x = A -> ( rank ` U. x ) = ( rank ` U. A ) ) |
| 3 | fveq2 | |- ( x = A -> ( rank ` x ) = ( rank ` A ) ) |
|
| 4 | 3 | unieqd | |- ( x = A -> U. ( rank ` x ) = U. ( rank ` A ) ) |
| 5 | 2 4 | eqeq12d | |- ( x = A -> ( ( rank ` U. x ) = U. ( rank ` x ) <-> ( rank ` U. A ) = U. ( rank ` A ) ) ) |
| 6 | vex | |- x e. _V |
|
| 7 | 6 | rankuni2 | |- ( rank ` U. x ) = U_ z e. x ( rank ` z ) |
| 8 | fvex | |- ( rank ` z ) e. _V |
|
| 9 | 8 | dfiun2 | |- U_ z e. x ( rank ` z ) = U. { y | E. z e. x y = ( rank ` z ) } |
| 10 | 7 9 | eqtri | |- ( rank ` U. x ) = U. { y | E. z e. x y = ( rank ` z ) } |
| 11 | df-rex | |- ( E. z e. x y = ( rank ` z ) <-> E. z ( z e. x /\ y = ( rank ` z ) ) ) |
|
| 12 | 6 | rankel | |- ( z e. x -> ( rank ` z ) e. ( rank ` x ) ) |
| 13 | 12 | anim1i | |- ( ( z e. x /\ y = ( rank ` z ) ) -> ( ( rank ` z ) e. ( rank ` x ) /\ y = ( rank ` z ) ) ) |
| 14 | 13 | eximi | |- ( E. z ( z e. x /\ y = ( rank ` z ) ) -> E. z ( ( rank ` z ) e. ( rank ` x ) /\ y = ( rank ` z ) ) ) |
| 15 | 19.42v | |- ( E. z ( y e. ( rank ` x ) /\ y = ( rank ` z ) ) <-> ( y e. ( rank ` x ) /\ E. z y = ( rank ` z ) ) ) |
|
| 16 | eleq1 | |- ( y = ( rank ` z ) -> ( y e. ( rank ` x ) <-> ( rank ` z ) e. ( rank ` x ) ) ) |
|
| 17 | 16 | pm5.32ri | |- ( ( y e. ( rank ` x ) /\ y = ( rank ` z ) ) <-> ( ( rank ` z ) e. ( rank ` x ) /\ y = ( rank ` z ) ) ) |
| 18 | 17 | exbii | |- ( E. z ( y e. ( rank ` x ) /\ y = ( rank ` z ) ) <-> E. z ( ( rank ` z ) e. ( rank ` x ) /\ y = ( rank ` z ) ) ) |
| 19 | simpl | |- ( ( y e. ( rank ` x ) /\ E. z y = ( rank ` z ) ) -> y e. ( rank ` x ) ) |
|
| 20 | rankon | |- ( rank ` x ) e. On |
|
| 21 | 20 | oneli | |- ( y e. ( rank ` x ) -> y e. On ) |
| 22 | r1fnon | |- R1 Fn On |
|
| 23 | fndm | |- ( R1 Fn On -> dom R1 = On ) |
|
| 24 | 22 23 | ax-mp | |- dom R1 = On |
| 25 | 21 24 | eleqtrrdi | |- ( y e. ( rank ` x ) -> y e. dom R1 ) |
| 26 | rankr1id | |- ( y e. dom R1 <-> ( rank ` ( R1 ` y ) ) = y ) |
|
| 27 | 25 26 | sylib | |- ( y e. ( rank ` x ) -> ( rank ` ( R1 ` y ) ) = y ) |
| 28 | 27 | eqcomd | |- ( y e. ( rank ` x ) -> y = ( rank ` ( R1 ` y ) ) ) |
| 29 | fvex | |- ( R1 ` y ) e. _V |
|
| 30 | fveq2 | |- ( z = ( R1 ` y ) -> ( rank ` z ) = ( rank ` ( R1 ` y ) ) ) |
|
| 31 | 30 | eqeq2d | |- ( z = ( R1 ` y ) -> ( y = ( rank ` z ) <-> y = ( rank ` ( R1 ` y ) ) ) ) |
| 32 | 29 31 | spcev | |- ( y = ( rank ` ( R1 ` y ) ) -> E. z y = ( rank ` z ) ) |
| 33 | 28 32 | syl | |- ( y e. ( rank ` x ) -> E. z y = ( rank ` z ) ) |
| 34 | 33 | ancli | |- ( y e. ( rank ` x ) -> ( y e. ( rank ` x ) /\ E. z y = ( rank ` z ) ) ) |
| 35 | 19 34 | impbii | |- ( ( y e. ( rank ` x ) /\ E. z y = ( rank ` z ) ) <-> y e. ( rank ` x ) ) |
| 36 | 15 18 35 | 3bitr3i | |- ( E. z ( ( rank ` z ) e. ( rank ` x ) /\ y = ( rank ` z ) ) <-> y e. ( rank ` x ) ) |
| 37 | 14 36 | sylib | |- ( E. z ( z e. x /\ y = ( rank ` z ) ) -> y e. ( rank ` x ) ) |
| 38 | 11 37 | sylbi | |- ( E. z e. x y = ( rank ` z ) -> y e. ( rank ` x ) ) |
| 39 | 38 | abssi | |- { y | E. z e. x y = ( rank ` z ) } C_ ( rank ` x ) |
| 40 | 39 | unissi | |- U. { y | E. z e. x y = ( rank ` z ) } C_ U. ( rank ` x ) |
| 41 | 10 40 | eqsstri | |- ( rank ` U. x ) C_ U. ( rank ` x ) |
| 42 | pwuni | |- x C_ ~P U. x |
|
| 43 | vuniex | |- U. x e. _V |
|
| 44 | 43 | pwex | |- ~P U. x e. _V |
| 45 | 44 | rankss | |- ( x C_ ~P U. x -> ( rank ` x ) C_ ( rank ` ~P U. x ) ) |
| 46 | 42 45 | ax-mp | |- ( rank ` x ) C_ ( rank ` ~P U. x ) |
| 47 | 43 | rankpw | |- ( rank ` ~P U. x ) = suc ( rank ` U. x ) |
| 48 | 46 47 | sseqtri | |- ( rank ` x ) C_ suc ( rank ` U. x ) |
| 49 | 48 | unissi | |- U. ( rank ` x ) C_ U. suc ( rank ` U. x ) |
| 50 | rankon | |- ( rank ` U. x ) e. On |
|
| 51 | 50 | onunisuci | |- U. suc ( rank ` U. x ) = ( rank ` U. x ) |
| 52 | 49 51 | sseqtri | |- U. ( rank ` x ) C_ ( rank ` U. x ) |
| 53 | 41 52 | eqssi | |- ( rank ` U. x ) = U. ( rank ` x ) |
| 54 | 5 53 | vtoclg | |- ( A e. _V -> ( rank ` U. A ) = U. ( rank ` A ) ) |
| 55 | uniexb | |- ( A e. _V <-> U. A e. _V ) |
|
| 56 | fvprc | |- ( -. U. A e. _V -> ( rank ` U. A ) = (/) ) |
|
| 57 | 55 56 | sylnbi | |- ( -. A e. _V -> ( rank ` U. A ) = (/) ) |
| 58 | uni0 | |- U. (/) = (/) |
|
| 59 | 57 58 | eqtr4di | |- ( -. A e. _V -> ( rank ` U. A ) = U. (/) ) |
| 60 | fvprc | |- ( -. A e. _V -> ( rank ` A ) = (/) ) |
|
| 61 | 60 | unieqd | |- ( -. A e. _V -> U. ( rank ` A ) = U. (/) ) |
| 62 | 59 61 | eqtr4d | |- ( -. A e. _V -> ( rank ` U. A ) = U. ( rank ` A ) ) |
| 63 | 54 62 | pm2.61i | |- ( rank ` U. A ) = U. ( rank ` A ) |