This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankr1id | ⊢ ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) | |
| 2 | fvex | ⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V | |
| 3 | 2 | pwid | ⊢ ( 𝑅1 ‘ 𝐴 ) ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) |
| 4 | r1sucg | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) | |
| 5 | 3 4 | eleqtrrid | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) |
| 6 | r1elwf | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 8 | rankr1bg | ⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ dom 𝑅1 ) → ( ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ⊆ 𝐴 ) ) | |
| 9 | 7 8 | mpancom | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( ( 𝑅1 ‘ 𝐴 ) ⊆ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ⊆ 𝐴 ) ) |
| 10 | 1 9 | mpbii | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ⊆ 𝐴 ) |
| 11 | rankonid | ⊢ ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ 𝐴 ) = 𝐴 ) | |
| 12 | 11 | biimpi | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ 𝐴 ) = 𝐴 ) |
| 13 | onssr1 | ⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) | |
| 14 | rankssb | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ) ) | |
| 15 | 7 13 14 | sylc | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 16 | 12 15 | eqsstrrd | ⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 17 | 10 16 | eqssd | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 ) |
| 18 | id | ⊢ ( ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 → ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 ) | |
| 19 | rankdmr1 | ⊢ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) ∈ dom 𝑅1 | |
| 20 | 18 19 | eqeltrrdi | ⊢ ( ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 → 𝐴 ∈ dom 𝑅1 ) |
| 21 | 17 20 | impbii | ⊢ ( 𝐴 ∈ dom 𝑅1 ↔ ( rank ‘ ( 𝑅1 ‘ 𝐴 ) ) = 𝐴 ) |