This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between rank and R1 . See rankr1ag for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankr1bg | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A C_ ( R1 ` B ) <-> ( rank ` A ) C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 2 | 1 | simpri | |- Lim dom R1 |
| 3 | limsuc | |- ( Lim dom R1 -> ( B e. dom R1 <-> suc B e. dom R1 ) ) |
|
| 4 | 2 3 | ax-mp | |- ( B e. dom R1 <-> suc B e. dom R1 ) |
| 5 | rankr1ag | |- ( ( A e. U. ( R1 " On ) /\ suc B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> ( rank ` A ) e. suc B ) ) |
|
| 6 | 4 5 | sylan2b | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> ( rank ` A ) e. suc B ) ) |
| 7 | r1sucg | |- ( B e. dom R1 -> ( R1 ` suc B ) = ~P ( R1 ` B ) ) |
|
| 8 | 7 | adantl | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( R1 ` suc B ) = ~P ( R1 ` B ) ) |
| 9 | 8 | eleq2d | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> A e. ~P ( R1 ` B ) ) ) |
| 10 | fvex | |- ( R1 ` B ) e. _V |
|
| 11 | 10 | elpw2 | |- ( A e. ~P ( R1 ` B ) <-> A C_ ( R1 ` B ) ) |
| 12 | 9 11 | bitr2di | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A C_ ( R1 ` B ) <-> A e. ( R1 ` suc B ) ) ) |
| 13 | rankon | |- ( rank ` A ) e. On |
|
| 14 | limord | |- ( Lim dom R1 -> Ord dom R1 ) |
|
| 15 | 2 14 | ax-mp | |- Ord dom R1 |
| 16 | ordelon | |- ( ( Ord dom R1 /\ B e. dom R1 ) -> B e. On ) |
|
| 17 | 15 16 | mpan | |- ( B e. dom R1 -> B e. On ) |
| 18 | 17 | adantl | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> B e. On ) |
| 19 | onsssuc | |- ( ( ( rank ` A ) e. On /\ B e. On ) -> ( ( rank ` A ) C_ B <-> ( rank ` A ) e. suc B ) ) |
|
| 20 | 13 18 19 | sylancr | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( rank ` A ) C_ B <-> ( rank ` A ) e. suc B ) ) |
| 21 | 6 12 20 | 3bitr4d | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A C_ ( R1 ` B ) <-> ( rank ` A ) C_ B ) ) |