This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subset relation is inherited by the rank function. Exercise 1 of TakeutiZaring p. 80. (Contributed by NM, 25-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankssb | |- ( B e. U. ( R1 " On ) -> ( A C_ B -> ( rank ` A ) C_ ( rank ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> A C_ B ) |
|
| 2 | r1rankidb | |- ( B e. U. ( R1 " On ) -> B C_ ( R1 ` ( rank ` B ) ) ) |
|
| 3 | 2 | adantr | |- ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> B C_ ( R1 ` ( rank ` B ) ) ) |
| 4 | 1 3 | sstrd | |- ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> A C_ ( R1 ` ( rank ` B ) ) ) |
| 5 | sswf | |- ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> A e. U. ( R1 " On ) ) |
|
| 6 | rankdmr1 | |- ( rank ` B ) e. dom R1 |
|
| 7 | rankr1bg | |- ( ( A e. U. ( R1 " On ) /\ ( rank ` B ) e. dom R1 ) -> ( A C_ ( R1 ` ( rank ` B ) ) <-> ( rank ` A ) C_ ( rank ` B ) ) ) |
|
| 8 | 5 6 7 | sylancl | |- ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> ( A C_ ( R1 ` ( rank ` B ) ) <-> ( rank ` A ) C_ ( rank ` B ) ) ) |
| 9 | 4 8 | mpbid | |- ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> ( rank ` A ) C_ ( rank ` B ) ) |
| 10 | 9 | ex | |- ( B e. U. ( R1 " On ) -> ( A C_ B -> ( rank ` A ) C_ ( rank ` B ) ) ) |