This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankdmr1 | |- ( rank ` A ) e. dom R1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankidb | |- ( A e. U. ( R1 " On ) -> A e. ( R1 ` suc ( rank ` A ) ) ) |
|
| 2 | elfvdm | |- ( A e. ( R1 ` suc ( rank ` A ) ) -> suc ( rank ` A ) e. dom R1 ) |
|
| 3 | 1 2 | syl | |- ( A e. U. ( R1 " On ) -> suc ( rank ` A ) e. dom R1 ) |
| 4 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 5 | 4 | simpri | |- Lim dom R1 |
| 6 | limsuc | |- ( Lim dom R1 -> ( ( rank ` A ) e. dom R1 <-> suc ( rank ` A ) e. dom R1 ) ) |
|
| 7 | 5 6 | ax-mp | |- ( ( rank ` A ) e. dom R1 <-> suc ( rank ` A ) e. dom R1 ) |
| 8 | 3 7 | sylibr | |- ( A e. U. ( R1 " On ) -> ( rank ` A ) e. dom R1 ) |
| 9 | rankvaln | |- ( -. A e. U. ( R1 " On ) -> ( rank ` A ) = (/) ) |
|
| 10 | limomss | |- ( Lim dom R1 -> _om C_ dom R1 ) |
|
| 11 | 5 10 | ax-mp | |- _om C_ dom R1 |
| 12 | peano1 | |- (/) e. _om |
|
| 13 | 11 12 | sselii | |- (/) e. dom R1 |
| 14 | 9 13 | eqeltrdi | |- ( -. A e. U. ( R1 " On ) -> ( rank ` A ) e. dom R1 ) |
| 15 | 8 14 | pm2.61i | |- ( rank ` A ) e. dom R1 |