This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1sucg | |- ( A e. dom R1 -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsucg | |- ( A e. dom rec ( ( x e. _V |-> ~P x ) , (/) ) -> ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` suc A ) = ( ( x e. _V |-> ~P x ) ` ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` A ) ) ) |
|
| 2 | df-r1 | |- R1 = rec ( ( x e. _V |-> ~P x ) , (/) ) |
|
| 3 | 2 | dmeqi | |- dom R1 = dom rec ( ( x e. _V |-> ~P x ) , (/) ) |
| 4 | 1 3 | eleq2s | |- ( A e. dom R1 -> ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` suc A ) = ( ( x e. _V |-> ~P x ) ` ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` A ) ) ) |
| 5 | 2 | fveq1i | |- ( R1 ` suc A ) = ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` suc A ) |
| 6 | fvex | |- ( R1 ` A ) e. _V |
|
| 7 | pweq | |- ( x = ( R1 ` A ) -> ~P x = ~P ( R1 ` A ) ) |
|
| 8 | eqid | |- ( x e. _V |-> ~P x ) = ( x e. _V |-> ~P x ) |
|
| 9 | 6 | pwex | |- ~P ( R1 ` A ) e. _V |
| 10 | 7 8 9 | fvmpt | |- ( ( R1 ` A ) e. _V -> ( ( x e. _V |-> ~P x ) ` ( R1 ` A ) ) = ~P ( R1 ` A ) ) |
| 11 | 6 10 | ax-mp | |- ( ( x e. _V |-> ~P x ) ` ( R1 ` A ) ) = ~P ( R1 ` A ) |
| 12 | 2 | fveq1i | |- ( R1 ` A ) = ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` A ) |
| 13 | 12 | fveq2i | |- ( ( x e. _V |-> ~P x ) ` ( R1 ` A ) ) = ( ( x e. _V |-> ~P x ) ` ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` A ) ) |
| 14 | 11 13 | eqtr3i | |- ~P ( R1 ` A ) = ( ( x e. _V |-> ~P x ) ` ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` A ) ) |
| 15 | 4 5 14 | 3eqtr4g | |- ( A e. dom R1 -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |