This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onssr1 | |- ( A e. dom R1 -> A C_ ( R1 ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 2 | 1 | simpri | |- Lim dom R1 |
| 3 | limord | |- ( Lim dom R1 -> Ord dom R1 ) |
|
| 4 | ordtr1 | |- ( Ord dom R1 -> ( ( x e. A /\ A e. dom R1 ) -> x e. dom R1 ) ) |
|
| 5 | 2 3 4 | mp2b | |- ( ( x e. A /\ A e. dom R1 ) -> x e. dom R1 ) |
| 6 | 5 | ancoms | |- ( ( A e. dom R1 /\ x e. A ) -> x e. dom R1 ) |
| 7 | rankonidlem | |- ( x e. dom R1 -> ( x e. U. ( R1 " On ) /\ ( rank ` x ) = x ) ) |
|
| 8 | 6 7 | syl | |- ( ( A e. dom R1 /\ x e. A ) -> ( x e. U. ( R1 " On ) /\ ( rank ` x ) = x ) ) |
| 9 | 8 | simprd | |- ( ( A e. dom R1 /\ x e. A ) -> ( rank ` x ) = x ) |
| 10 | simpr | |- ( ( A e. dom R1 /\ x e. A ) -> x e. A ) |
|
| 11 | 9 10 | eqeltrd | |- ( ( A e. dom R1 /\ x e. A ) -> ( rank ` x ) e. A ) |
| 12 | 8 | simpld | |- ( ( A e. dom R1 /\ x e. A ) -> x e. U. ( R1 " On ) ) |
| 13 | simpl | |- ( ( A e. dom R1 /\ x e. A ) -> A e. dom R1 ) |
|
| 14 | rankr1ag | |- ( ( x e. U. ( R1 " On ) /\ A e. dom R1 ) -> ( x e. ( R1 ` A ) <-> ( rank ` x ) e. A ) ) |
|
| 15 | 12 13 14 | syl2anc | |- ( ( A e. dom R1 /\ x e. A ) -> ( x e. ( R1 ` A ) <-> ( rank ` x ) e. A ) ) |
| 16 | 11 15 | mpbird | |- ( ( A e. dom R1 /\ x e. A ) -> x e. ( R1 ` A ) ) |
| 17 | 16 | ex | |- ( A e. dom R1 -> ( x e. A -> x e. ( R1 ` A ) ) ) |
| 18 | 17 | ssrdv | |- ( A e. dom R1 -> A C_ ( R1 ` A ) ) |