This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1limg | |- ( ( A e. dom R1 /\ Lim A ) -> ( R1 ` A ) = U_ x e. A ( R1 ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r1 | |- R1 = rec ( ( y e. _V |-> ~P y ) , (/) ) |
|
| 2 | 1 | dmeqi | |- dom R1 = dom rec ( ( y e. _V |-> ~P y ) , (/) ) |
| 3 | 2 | eleq2i | |- ( A e. dom R1 <-> A e. dom rec ( ( y e. _V |-> ~P y ) , (/) ) ) |
| 4 | rdglimg | |- ( ( A e. dom rec ( ( y e. _V |-> ~P y ) , (/) ) /\ Lim A ) -> ( rec ( ( y e. _V |-> ~P y ) , (/) ) ` A ) = U. ( rec ( ( y e. _V |-> ~P y ) , (/) ) " A ) ) |
|
| 5 | 3 4 | sylanb | |- ( ( A e. dom R1 /\ Lim A ) -> ( rec ( ( y e. _V |-> ~P y ) , (/) ) ` A ) = U. ( rec ( ( y e. _V |-> ~P y ) , (/) ) " A ) ) |
| 6 | 1 | fveq1i | |- ( R1 ` A ) = ( rec ( ( y e. _V |-> ~P y ) , (/) ) ` A ) |
| 7 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 8 | 7 | simpli | |- Fun R1 |
| 9 | funiunfv | |- ( Fun R1 -> U_ x e. A ( R1 ` x ) = U. ( R1 " A ) ) |
|
| 10 | 8 9 | ax-mp | |- U_ x e. A ( R1 ` x ) = U. ( R1 " A ) |
| 11 | 1 | imaeq1i | |- ( R1 " A ) = ( rec ( ( y e. _V |-> ~P y ) , (/) ) " A ) |
| 12 | 11 | unieqi | |- U. ( R1 " A ) = U. ( rec ( ( y e. _V |-> ~P y ) , (/) ) " A ) |
| 13 | 10 12 | eqtri | |- U_ x e. A ( R1 ` x ) = U. ( rec ( ( y e. _V |-> ~P y ) , (/) ) " A ) |
| 14 | 5 6 13 | 3eqtr4g | |- ( ( A e. dom R1 /\ Lim A ) -> ( R1 ` A ) = U_ x e. A ( R1 ` x ) ) |