This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tz9.12lem.1 | |- A e. _V |
|
| tz9.12lem.2 | |- F = ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) |
||
| Assertion | tz9.12lem1 | |- ( F " A ) C_ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.12lem.1 | |- A e. _V |
|
| 2 | tz9.12lem.2 | |- F = ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) |
|
| 3 | imassrn | |- ( F " A ) C_ ran F |
|
| 4 | 2 | rnmpt | |- ran F = { x | E. z e. _V x = |^| { v e. On | z e. ( R1 ` v ) } } |
| 5 | id | |- ( x = |^| { v e. On | z e. ( R1 ` v ) } -> x = |^| { v e. On | z e. ( R1 ` v ) } ) |
|
| 6 | ssrab2 | |- { v e. On | z e. ( R1 ` v ) } C_ On |
|
| 7 | eqvisset | |- ( x = |^| { v e. On | z e. ( R1 ` v ) } -> |^| { v e. On | z e. ( R1 ` v ) } e. _V ) |
|
| 8 | intex | |- ( { v e. On | z e. ( R1 ` v ) } =/= (/) <-> |^| { v e. On | z e. ( R1 ` v ) } e. _V ) |
|
| 9 | 7 8 | sylibr | |- ( x = |^| { v e. On | z e. ( R1 ` v ) } -> { v e. On | z e. ( R1 ` v ) } =/= (/) ) |
| 10 | oninton | |- ( ( { v e. On | z e. ( R1 ` v ) } C_ On /\ { v e. On | z e. ( R1 ` v ) } =/= (/) ) -> |^| { v e. On | z e. ( R1 ` v ) } e. On ) |
|
| 11 | 6 9 10 | sylancr | |- ( x = |^| { v e. On | z e. ( R1 ` v ) } -> |^| { v e. On | z e. ( R1 ` v ) } e. On ) |
| 12 | 5 11 | eqeltrd | |- ( x = |^| { v e. On | z e. ( R1 ` v ) } -> x e. On ) |
| 13 | 12 | rexlimivw | |- ( E. z e. _V x = |^| { v e. On | z e. ( R1 ` v ) } -> x e. On ) |
| 14 | 13 | abssi | |- { x | E. z e. _V x = |^| { v e. On | z e. ( R1 ` v ) } } C_ On |
| 15 | 4 14 | eqsstri | |- ran F C_ On |
| 16 | 3 15 | sstri | |- ( F " A ) C_ On |