This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of BellMachover p. 478. (Contributed by NM, 22-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1ord3g | |- ( ( A e. dom R1 /\ B e. dom R1 ) -> ( A C_ B -> ( R1 ` A ) C_ ( R1 ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 2 | 1 | simpri | |- Lim dom R1 |
| 3 | limord | |- ( Lim dom R1 -> Ord dom R1 ) |
|
| 4 | ordsson | |- ( Ord dom R1 -> dom R1 C_ On ) |
|
| 5 | 2 3 4 | mp2b | |- dom R1 C_ On |
| 6 | 5 | sseli | |- ( A e. dom R1 -> A e. On ) |
| 7 | 5 | sseli | |- ( B e. dom R1 -> B e. On ) |
| 8 | onsseleq | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( A e. dom R1 /\ B e. dom R1 ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
| 10 | r1tr | |- Tr ( R1 ` B ) |
|
| 11 | r1ordg | |- ( B e. dom R1 -> ( A e. B -> ( R1 ` A ) e. ( R1 ` B ) ) ) |
|
| 12 | 11 | adantl | |- ( ( A e. dom R1 /\ B e. dom R1 ) -> ( A e. B -> ( R1 ` A ) e. ( R1 ` B ) ) ) |
| 13 | trss | |- ( Tr ( R1 ` B ) -> ( ( R1 ` A ) e. ( R1 ` B ) -> ( R1 ` A ) C_ ( R1 ` B ) ) ) |
|
| 14 | 10 12 13 | mpsylsyld | |- ( ( A e. dom R1 /\ B e. dom R1 ) -> ( A e. B -> ( R1 ` A ) C_ ( R1 ` B ) ) ) |
| 15 | fveq2 | |- ( A = B -> ( R1 ` A ) = ( R1 ` B ) ) |
|
| 16 | eqimss | |- ( ( R1 ` A ) = ( R1 ` B ) -> ( R1 ` A ) C_ ( R1 ` B ) ) |
|
| 17 | 15 16 | syl | |- ( A = B -> ( R1 ` A ) C_ ( R1 ` B ) ) |
| 18 | 17 | a1i | |- ( ( A e. dom R1 /\ B e. dom R1 ) -> ( A = B -> ( R1 ` A ) C_ ( R1 ` B ) ) ) |
| 19 | 14 18 | jaod | |- ( ( A e. dom R1 /\ B e. dom R1 ) -> ( ( A e. B \/ A = B ) -> ( R1 ` A ) C_ ( R1 ` B ) ) ) |
| 20 | 9 19 | sylbid | |- ( ( A e. dom R1 /\ B e. dom R1 ) -> ( A C_ B -> ( R1 ` A ) C_ ( R1 ` B ) ) ) |