This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon avoids ax-rep .) (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun | |- Fun rec ( ( x e. _V |-> ~P x ) , (/) ) |
|
| 2 | df-r1 | |- R1 = rec ( ( x e. _V |-> ~P x ) , (/) ) |
|
| 3 | 2 | funeqi | |- ( Fun R1 <-> Fun rec ( ( x e. _V |-> ~P x ) , (/) ) ) |
| 4 | 1 3 | mpbir | |- Fun R1 |
| 5 | rdgdmlim | |- Lim dom rec ( ( x e. _V |-> ~P x ) , (/) ) |
|
| 6 | 2 | dmeqi | |- dom R1 = dom rec ( ( x e. _V |-> ~P x ) , (/) ) |
| 7 | limeq | |- ( dom R1 = dom rec ( ( x e. _V |-> ~P x ) , (/) ) -> ( Lim dom R1 <-> Lim dom rec ( ( x e. _V |-> ~P x ) , (/) ) ) ) |
|
| 8 | 6 7 | ax-mp | |- ( Lim dom R1 <-> Lim dom rec ( ( x e. _V |-> ~P x ) , (/) ) ) |
| 9 | 5 8 | mpbir | |- Lim dom R1 |
| 10 | 4 9 | pm3.2i | |- ( Fun R1 /\ Lim dom R1 ) |