This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79. (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankr1c | |- ( A e. U. ( R1 " On ) -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( B = ( rank ` A ) -> B = ( rank ` A ) ) |
|
| 2 | rankdmr1 | |- ( rank ` A ) e. dom R1 |
|
| 3 | 1 2 | eqeltrdi | |- ( B = ( rank ` A ) -> B e. dom R1 ) |
| 4 | 3 | a1i | |- ( A e. U. ( R1 " On ) -> ( B = ( rank ` A ) -> B e. dom R1 ) ) |
| 5 | elfvdm | |- ( A e. ( R1 ` suc B ) -> suc B e. dom R1 ) |
|
| 6 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 7 | 6 | simpri | |- Lim dom R1 |
| 8 | limsuc | |- ( Lim dom R1 -> ( B e. dom R1 <-> suc B e. dom R1 ) ) |
|
| 9 | 7 8 | ax-mp | |- ( B e. dom R1 <-> suc B e. dom R1 ) |
| 10 | 5 9 | sylibr | |- ( A e. ( R1 ` suc B ) -> B e. dom R1 ) |
| 11 | 10 | adantl | |- ( ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) -> B e. dom R1 ) |
| 12 | 11 | a1i | |- ( A e. U. ( R1 " On ) -> ( ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) -> B e. dom R1 ) ) |
| 13 | eqss | |- ( B = ( rank ` A ) <-> ( B C_ ( rank ` A ) /\ ( rank ` A ) C_ B ) ) |
|
| 14 | rankr1clem | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( -. A e. ( R1 ` B ) <-> B C_ ( rank ` A ) ) ) |
|
| 15 | rankr1ag | |- ( ( A e. U. ( R1 " On ) /\ suc B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> ( rank ` A ) e. suc B ) ) |
|
| 16 | 9 15 | sylan2b | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> ( rank ` A ) e. suc B ) ) |
| 17 | rankon | |- ( rank ` A ) e. On |
|
| 18 | limord | |- ( Lim dom R1 -> Ord dom R1 ) |
|
| 19 | 7 18 | ax-mp | |- Ord dom R1 |
| 20 | ordelon | |- ( ( Ord dom R1 /\ B e. dom R1 ) -> B e. On ) |
|
| 21 | 19 20 | mpan | |- ( B e. dom R1 -> B e. On ) |
| 22 | 21 | adantl | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> B e. On ) |
| 23 | onsssuc | |- ( ( ( rank ` A ) e. On /\ B e. On ) -> ( ( rank ` A ) C_ B <-> ( rank ` A ) e. suc B ) ) |
|
| 24 | 17 22 23 | sylancr | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( rank ` A ) C_ B <-> ( rank ` A ) e. suc B ) ) |
| 25 | 16 24 | bitr4d | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` suc B ) <-> ( rank ` A ) C_ B ) ) |
| 26 | 14 25 | anbi12d | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) <-> ( B C_ ( rank ` A ) /\ ( rank ` A ) C_ B ) ) ) |
| 27 | 13 26 | bitr4id | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) |
| 28 | 27 | ex | |- ( A e. U. ( R1 " On ) -> ( B e. dom R1 -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) ) |
| 29 | 4 12 28 | pm5.21ndd | |- ( A e. U. ( R1 " On ) -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) |