This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0tsk | |- (/) e. Tarski |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 | |- A. x e. (/) ( ~P x C_ (/) /\ ~P x e. (/) ) |
|
| 2 | elsni | |- ( x e. { (/) } -> x = (/) ) |
|
| 3 | 0ex | |- (/) e. _V |
|
| 4 | 3 | enref | |- (/) ~~ (/) |
| 5 | breq1 | |- ( x = (/) -> ( x ~~ (/) <-> (/) ~~ (/) ) ) |
|
| 6 | 4 5 | mpbiri | |- ( x = (/) -> x ~~ (/) ) |
| 7 | 6 | orcd | |- ( x = (/) -> ( x ~~ (/) \/ x e. (/) ) ) |
| 8 | 2 7 | syl | |- ( x e. { (/) } -> ( x ~~ (/) \/ x e. (/) ) ) |
| 9 | pw0 | |- ~P (/) = { (/) } |
|
| 10 | 8 9 | eleq2s | |- ( x e. ~P (/) -> ( x ~~ (/) \/ x e. (/) ) ) |
| 11 | 10 | rgen | |- A. x e. ~P (/) ( x ~~ (/) \/ x e. (/) ) |
| 12 | eltsk2g | |- ( (/) e. _V -> ( (/) e. Tarski <-> ( A. x e. (/) ( ~P x C_ (/) /\ ~P x e. (/) ) /\ A. x e. ~P (/) ( x ~~ (/) \/ x e. (/) ) ) ) ) |
|
| 13 | 3 12 | ax-mp | |- ( (/) e. Tarski <-> ( A. x e. (/) ( ~P x C_ (/) /\ ~P x e. (/) ) /\ A. x e. ~P (/) ( x ~~ (/) \/ x e. (/) ) ) ) |
| 14 | 1 11 13 | mpbir2an | |- (/) e. Tarski |