This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsken | |- ( ( T e. Tarski /\ A C_ T ) -> ( A ~~ T \/ A e. T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltskg | |- ( T e. Tarski -> ( T e. Tarski <-> ( A. x e. T ( ~P x C_ T /\ E. y e. T ~P x C_ y ) /\ A. x e. ~P T ( x ~~ T \/ x e. T ) ) ) ) |
|
| 2 | 1 | ibi | |- ( T e. Tarski -> ( A. x e. T ( ~P x C_ T /\ E. y e. T ~P x C_ y ) /\ A. x e. ~P T ( x ~~ T \/ x e. T ) ) ) |
| 3 | 2 | simprd | |- ( T e. Tarski -> A. x e. ~P T ( x ~~ T \/ x e. T ) ) |
| 4 | elpw2g | |- ( T e. Tarski -> ( A e. ~P T <-> A C_ T ) ) |
|
| 5 | 4 | biimpar | |- ( ( T e. Tarski /\ A C_ T ) -> A e. ~P T ) |
| 6 | breq1 | |- ( x = A -> ( x ~~ T <-> A ~~ T ) ) |
|
| 7 | eleq1 | |- ( x = A -> ( x e. T <-> A e. T ) ) |
|
| 8 | 6 7 | orbi12d | |- ( x = A -> ( ( x ~~ T \/ x e. T ) <-> ( A ~~ T \/ A e. T ) ) ) |
| 9 | 8 | rspccva | |- ( ( A. x e. ~P T ( x ~~ T \/ x e. T ) /\ A e. ~P T ) -> ( A ~~ T \/ A e. T ) ) |
| 10 | 3 5 9 | syl2an2r | |- ( ( T e. Tarski /\ A C_ T ) -> ( A ~~ T \/ A e. T ) ) |