This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal B instead of zero. Remark in TakeutiZaring p. 57. (Contributed by NM, 5-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfindsg.1 | |- ( x = B -> ( ph <-> ps ) ) |
|
| tfindsg.2 | |- ( x = y -> ( ph <-> ch ) ) |
||
| tfindsg.3 | |- ( x = suc y -> ( ph <-> th ) ) |
||
| tfindsg.4 | |- ( x = A -> ( ph <-> ta ) ) |
||
| tfindsg.5 | |- ( B e. On -> ps ) |
||
| tfindsg.6 | |- ( ( ( y e. On /\ B e. On ) /\ B C_ y ) -> ( ch -> th ) ) |
||
| tfindsg.7 | |- ( ( ( Lim x /\ B e. On ) /\ B C_ x ) -> ( A. y e. x ( B C_ y -> ch ) -> ph ) ) |
||
| Assertion | tfindsg | |- ( ( ( A e. On /\ B e. On ) /\ B C_ A ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfindsg.1 | |- ( x = B -> ( ph <-> ps ) ) |
|
| 2 | tfindsg.2 | |- ( x = y -> ( ph <-> ch ) ) |
|
| 3 | tfindsg.3 | |- ( x = suc y -> ( ph <-> th ) ) |
|
| 4 | tfindsg.4 | |- ( x = A -> ( ph <-> ta ) ) |
|
| 5 | tfindsg.5 | |- ( B e. On -> ps ) |
|
| 6 | tfindsg.6 | |- ( ( ( y e. On /\ B e. On ) /\ B C_ y ) -> ( ch -> th ) ) |
|
| 7 | tfindsg.7 | |- ( ( ( Lim x /\ B e. On ) /\ B C_ x ) -> ( A. y e. x ( B C_ y -> ch ) -> ph ) ) |
|
| 8 | sseq2 | |- ( x = (/) -> ( B C_ x <-> B C_ (/) ) ) |
|
| 9 | 8 | adantl | |- ( ( B = (/) /\ x = (/) ) -> ( B C_ x <-> B C_ (/) ) ) |
| 10 | eqeq2 | |- ( B = (/) -> ( x = B <-> x = (/) ) ) |
|
| 11 | 10 1 | biimtrrdi | |- ( B = (/) -> ( x = (/) -> ( ph <-> ps ) ) ) |
| 12 | 11 | imp | |- ( ( B = (/) /\ x = (/) ) -> ( ph <-> ps ) ) |
| 13 | 9 12 | imbi12d | |- ( ( B = (/) /\ x = (/) ) -> ( ( B C_ x -> ph ) <-> ( B C_ (/) -> ps ) ) ) |
| 14 | 8 | imbi1d | |- ( x = (/) -> ( ( B C_ x -> ph ) <-> ( B C_ (/) -> ph ) ) ) |
| 15 | ss0 | |- ( B C_ (/) -> B = (/) ) |
|
| 16 | 15 | con3i | |- ( -. B = (/) -> -. B C_ (/) ) |
| 17 | 16 | pm2.21d | |- ( -. B = (/) -> ( B C_ (/) -> ( ph <-> ps ) ) ) |
| 18 | 17 | pm5.74d | |- ( -. B = (/) -> ( ( B C_ (/) -> ph ) <-> ( B C_ (/) -> ps ) ) ) |
| 19 | 14 18 | sylan9bbr | |- ( ( -. B = (/) /\ x = (/) ) -> ( ( B C_ x -> ph ) <-> ( B C_ (/) -> ps ) ) ) |
| 20 | 13 19 | pm2.61ian | |- ( x = (/) -> ( ( B C_ x -> ph ) <-> ( B C_ (/) -> ps ) ) ) |
| 21 | 20 | imbi2d | |- ( x = (/) -> ( ( B e. On -> ( B C_ x -> ph ) ) <-> ( B e. On -> ( B C_ (/) -> ps ) ) ) ) |
| 22 | sseq2 | |- ( x = y -> ( B C_ x <-> B C_ y ) ) |
|
| 23 | 22 2 | imbi12d | |- ( x = y -> ( ( B C_ x -> ph ) <-> ( B C_ y -> ch ) ) ) |
| 24 | 23 | imbi2d | |- ( x = y -> ( ( B e. On -> ( B C_ x -> ph ) ) <-> ( B e. On -> ( B C_ y -> ch ) ) ) ) |
| 25 | sseq2 | |- ( x = suc y -> ( B C_ x <-> B C_ suc y ) ) |
|
| 26 | 25 3 | imbi12d | |- ( x = suc y -> ( ( B C_ x -> ph ) <-> ( B C_ suc y -> th ) ) ) |
| 27 | 26 | imbi2d | |- ( x = suc y -> ( ( B e. On -> ( B C_ x -> ph ) ) <-> ( B e. On -> ( B C_ suc y -> th ) ) ) ) |
| 28 | sseq2 | |- ( x = A -> ( B C_ x <-> B C_ A ) ) |
|
| 29 | 28 4 | imbi12d | |- ( x = A -> ( ( B C_ x -> ph ) <-> ( B C_ A -> ta ) ) ) |
| 30 | 29 | imbi2d | |- ( x = A -> ( ( B e. On -> ( B C_ x -> ph ) ) <-> ( B e. On -> ( B C_ A -> ta ) ) ) ) |
| 31 | 5 | a1d | |- ( B e. On -> ( B C_ (/) -> ps ) ) |
| 32 | vex | |- y e. _V |
|
| 33 | 32 | sucex | |- suc y e. _V |
| 34 | 33 | eqvinc | |- ( suc y = B <-> E. x ( x = suc y /\ x = B ) ) |
| 35 | 5 1 | imbitrrid | |- ( x = B -> ( B e. On -> ph ) ) |
| 36 | 3 | biimpd | |- ( x = suc y -> ( ph -> th ) ) |
| 37 | 35 36 | sylan9r | |- ( ( x = suc y /\ x = B ) -> ( B e. On -> th ) ) |
| 38 | 37 | exlimiv | |- ( E. x ( x = suc y /\ x = B ) -> ( B e. On -> th ) ) |
| 39 | 34 38 | sylbi | |- ( suc y = B -> ( B e. On -> th ) ) |
| 40 | 39 | eqcoms | |- ( B = suc y -> ( B e. On -> th ) ) |
| 41 | 40 | imim2i | |- ( ( B C_ suc y -> B = suc y ) -> ( B C_ suc y -> ( B e. On -> th ) ) ) |
| 42 | 41 | a1d | |- ( ( B C_ suc y -> B = suc y ) -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> ( B e. On -> th ) ) ) ) |
| 43 | 42 | com4r | |- ( B e. On -> ( ( B C_ suc y -> B = suc y ) -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) ) |
| 44 | 43 | adantl | |- ( ( y e. On /\ B e. On ) -> ( ( B C_ suc y -> B = suc y ) -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) ) |
| 45 | df-ne | |- ( B =/= suc y <-> -. B = suc y ) |
|
| 46 | 45 | anbi2i | |- ( ( B C_ suc y /\ B =/= suc y ) <-> ( B C_ suc y /\ -. B = suc y ) ) |
| 47 | annim | |- ( ( B C_ suc y /\ -. B = suc y ) <-> -. ( B C_ suc y -> B = suc y ) ) |
|
| 48 | 46 47 | bitri | |- ( ( B C_ suc y /\ B =/= suc y ) <-> -. ( B C_ suc y -> B = suc y ) ) |
| 49 | onsssuc | |- ( ( B e. On /\ y e. On ) -> ( B C_ y <-> B e. suc y ) ) |
|
| 50 | onsuc | |- ( y e. On -> suc y e. On ) |
|
| 51 | onelpss | |- ( ( B e. On /\ suc y e. On ) -> ( B e. suc y <-> ( B C_ suc y /\ B =/= suc y ) ) ) |
|
| 52 | 50 51 | sylan2 | |- ( ( B e. On /\ y e. On ) -> ( B e. suc y <-> ( B C_ suc y /\ B =/= suc y ) ) ) |
| 53 | 49 52 | bitrd | |- ( ( B e. On /\ y e. On ) -> ( B C_ y <-> ( B C_ suc y /\ B =/= suc y ) ) ) |
| 54 | 53 | ancoms | |- ( ( y e. On /\ B e. On ) -> ( B C_ y <-> ( B C_ suc y /\ B =/= suc y ) ) ) |
| 55 | 6 | ex | |- ( ( y e. On /\ B e. On ) -> ( B C_ y -> ( ch -> th ) ) ) |
| 56 | 55 | a1ddd | |- ( ( y e. On /\ B e. On ) -> ( B C_ y -> ( ch -> ( B C_ suc y -> th ) ) ) ) |
| 57 | 56 | a2d | |- ( ( y e. On /\ B e. On ) -> ( ( B C_ y -> ch ) -> ( B C_ y -> ( B C_ suc y -> th ) ) ) ) |
| 58 | 57 | com23 | |- ( ( y e. On /\ B e. On ) -> ( B C_ y -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) ) |
| 59 | 54 58 | sylbird | |- ( ( y e. On /\ B e. On ) -> ( ( B C_ suc y /\ B =/= suc y ) -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) ) |
| 60 | 48 59 | biimtrrid | |- ( ( y e. On /\ B e. On ) -> ( -. ( B C_ suc y -> B = suc y ) -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) ) |
| 61 | 44 60 | pm2.61d | |- ( ( y e. On /\ B e. On ) -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) |
| 62 | 61 | ex | |- ( y e. On -> ( B e. On -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) ) |
| 63 | 62 | a2d | |- ( y e. On -> ( ( B e. On -> ( B C_ y -> ch ) ) -> ( B e. On -> ( B C_ suc y -> th ) ) ) ) |
| 64 | pm2.27 | |- ( B e. On -> ( ( B e. On -> ( B C_ y -> ch ) ) -> ( B C_ y -> ch ) ) ) |
|
| 65 | 64 | ralimdv | |- ( B e. On -> ( A. y e. x ( B e. On -> ( B C_ y -> ch ) ) -> A. y e. x ( B C_ y -> ch ) ) ) |
| 66 | 65 | ad2antlr | |- ( ( ( Lim x /\ B e. On ) /\ B C_ x ) -> ( A. y e. x ( B e. On -> ( B C_ y -> ch ) ) -> A. y e. x ( B C_ y -> ch ) ) ) |
| 67 | 66 7 | syld | |- ( ( ( Lim x /\ B e. On ) /\ B C_ x ) -> ( A. y e. x ( B e. On -> ( B C_ y -> ch ) ) -> ph ) ) |
| 68 | 67 | exp31 | |- ( Lim x -> ( B e. On -> ( B C_ x -> ( A. y e. x ( B e. On -> ( B C_ y -> ch ) ) -> ph ) ) ) ) |
| 69 | 68 | com3l | |- ( B e. On -> ( B C_ x -> ( Lim x -> ( A. y e. x ( B e. On -> ( B C_ y -> ch ) ) -> ph ) ) ) ) |
| 70 | 69 | com4t | |- ( Lim x -> ( A. y e. x ( B e. On -> ( B C_ y -> ch ) ) -> ( B e. On -> ( B C_ x -> ph ) ) ) ) |
| 71 | 21 24 27 30 31 63 70 | tfinds | |- ( A e. On -> ( B e. On -> ( B C_ A -> ta ) ) ) |
| 72 | 71 | imp31 | |- ( ( ( A e. On /\ B e. On ) /\ B C_ A ) -> ta ) |