This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Calculate the square of M . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pythagtriplem11.1 | |- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| Assertion | pythagtriplem12 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( M ^ 2 ) = ( ( C + A ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem11.1 | |- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| 2 | 1 | oveq1i | |- ( M ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) |
| 3 | nncn | |- ( C e. NN -> C e. CC ) |
|
| 4 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 5 | addcl | |- ( ( C e. CC /\ B e. CC ) -> ( C + B ) e. CC ) |
|
| 6 | 3 4 5 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. CC ) |
| 7 | 6 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. CC ) |
| 8 | 7 | sqrtcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( sqrt ` ( C + B ) ) e. CC ) |
| 9 | subcl | |- ( ( C e. CC /\ B e. CC ) -> ( C - B ) e. CC ) |
|
| 10 | 3 4 9 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. CC ) |
| 11 | 10 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. CC ) |
| 12 | 11 | sqrtcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( sqrt ` ( C - B ) ) e. CC ) |
| 13 | 8 12 | addcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC ) |
| 14 | 13 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC ) |
| 15 | 2cn | |- 2 e. CC |
|
| 16 | 2ne0 | |- 2 =/= 0 |
|
| 17 | sqdiv | |- ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) ) |
|
| 18 | 15 16 17 | mp3an23 | |- ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) ) |
| 19 | 15 | sqvali | |- ( 2 ^ 2 ) = ( 2 x. 2 ) |
| 20 | 19 | oveq2i | |- ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 ^ 2 ) ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) |
| 21 | 18 20 | eqtrdi | |- ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) ) |
| 22 | 14 21 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) ) |
| 23 | 8 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. CC ) |
| 24 | 12 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. CC ) |
| 25 | binom2 | |- ( ( ( sqrt ` ( C + B ) ) e. CC /\ ( sqrt ` ( C - B ) ) e. CC ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) ) |
|
| 26 | 23 24 25 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) = ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) ) |
| 27 | nnre | |- ( C e. NN -> C e. RR ) |
|
| 28 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 29 | readdcl | |- ( ( C e. RR /\ B e. RR ) -> ( C + B ) e. RR ) |
|
| 30 | 27 28 29 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. RR ) |
| 31 | 30 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. RR ) |
| 32 | 31 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. RR ) |
| 33 | 27 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. RR ) |
| 34 | 28 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. RR ) |
| 35 | nngt0 | |- ( C e. NN -> 0 < C ) |
|
| 36 | 35 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < C ) |
| 37 | nngt0 | |- ( B e. NN -> 0 < B ) |
|
| 38 | 37 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < B ) |
| 39 | 33 34 36 38 | addgt0d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < ( C + B ) ) |
| 40 | 39 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( C + B ) ) |
| 41 | 0re | |- 0 e. RR |
|
| 42 | ltle | |- ( ( 0 e. RR /\ ( C + B ) e. RR ) -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
|
| 43 | 41 42 | mpan | |- ( ( C + B ) e. RR -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
| 44 | 32 40 43 | sylc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C + B ) ) |
| 45 | resqrtth | |- ( ( ( C + B ) e. RR /\ 0 <_ ( C + B ) ) -> ( ( sqrt ` ( C + B ) ) ^ 2 ) = ( C + B ) ) |
|
| 46 | 32 44 45 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) ^ 2 ) = ( C + B ) ) |
| 47 | 46 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) = ( ( C + B ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) ) |
| 48 | resubcl | |- ( ( C e. RR /\ B e. RR ) -> ( C - B ) e. RR ) |
|
| 49 | 27 28 48 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. RR ) |
| 50 | 49 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. RR ) |
| 51 | 50 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. RR ) |
| 52 | pythagtriplem10 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 < ( C - B ) ) |
|
| 53 | 52 | 3adant3 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( C - B ) ) |
| 54 | ltle | |- ( ( 0 e. RR /\ ( C - B ) e. RR ) -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
|
| 55 | 41 54 | mpan | |- ( ( C - B ) e. RR -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
| 56 | 51 53 55 | sylc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C - B ) ) |
| 57 | resqrtth | |- ( ( ( C - B ) e. RR /\ 0 <_ ( C - B ) ) -> ( ( sqrt ` ( C - B ) ) ^ 2 ) = ( C - B ) ) |
|
| 58 | 51 56 57 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C - B ) ) ^ 2 ) = ( C - B ) ) |
| 59 | 47 58 | oveq12d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( ( sqrt ` ( C - B ) ) ^ 2 ) ) = ( ( ( C + B ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( C - B ) ) ) |
| 60 | 7 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. CC ) |
| 61 | 8 12 | mulcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) e. CC ) |
| 62 | mulcl | |- ( ( 2 e. CC /\ ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) e. CC ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) e. CC ) |
|
| 63 | 15 61 62 | sylancr | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) e. CC ) |
| 64 | 63 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) e. CC ) |
| 65 | 11 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. CC ) |
| 66 | 60 64 65 | add32d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( C - B ) ) = ( ( ( C + B ) + ( C - B ) ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) ) |
| 67 | 3 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. CC ) |
| 68 | 67 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. CC ) |
| 69 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 70 | 69 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. CC ) |
| 71 | 70 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. CC ) |
| 72 | adddi | |- ( ( 2 e. CC /\ C e. CC /\ A e. CC ) -> ( 2 x. ( C + A ) ) = ( ( 2 x. C ) + ( 2 x. A ) ) ) |
|
| 73 | 15 68 71 72 | mp3an2i | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( C + A ) ) = ( ( 2 x. C ) + ( 2 x. A ) ) ) |
| 74 | 4 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. CC ) |
| 75 | 74 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. CC ) |
| 76 | 68 75 68 | ppncand | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) + ( C - B ) ) = ( C + C ) ) |
| 77 | 68 | 2timesd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. C ) = ( C + C ) ) |
| 78 | 76 77 | eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) + ( C - B ) ) = ( 2 x. C ) ) |
| 79 | oveq1 | |- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
|
| 80 | 79 | 3ad2ant2 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
| 81 | 71 | sqcld | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A ^ 2 ) e. CC ) |
| 82 | 75 | sqcld | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( B ^ 2 ) e. CC ) |
| 83 | 81 82 | pncand | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 84 | subsq | |- ( ( C e. CC /\ B e. CC ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
|
| 85 | 68 75 84 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
| 86 | 80 83 85 | 3eqtr3rd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) x. ( C - B ) ) = ( A ^ 2 ) ) |
| 87 | 86 | fveq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( ( C + B ) x. ( C - B ) ) ) = ( sqrt ` ( A ^ 2 ) ) ) |
| 88 | 32 44 51 56 | sqrtmuld | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( ( C + B ) x. ( C - B ) ) ) = ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) |
| 89 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 90 | 89 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. RR ) |
| 91 | 90 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. RR ) |
| 92 | nnnn0 | |- ( A e. NN -> A e. NN0 ) |
|
| 93 | 92 | nn0ge0d | |- ( A e. NN -> 0 <_ A ) |
| 94 | 93 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ A ) |
| 95 | 94 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ A ) |
| 96 | 91 95 | sqrtsqd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( A ^ 2 ) ) = A ) |
| 97 | 87 88 96 | 3eqtr3d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) = A ) |
| 98 | 97 | oveq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) = ( 2 x. A ) ) |
| 99 | 78 98 | oveq12d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) + ( C - B ) ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) = ( ( 2 x. C ) + ( 2 x. A ) ) ) |
| 100 | 73 99 | eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( C + A ) ) = ( ( ( C + B ) + ( C - B ) ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) ) |
| 101 | 66 100 | eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) + ( 2 x. ( ( sqrt ` ( C + B ) ) x. ( sqrt ` ( C - B ) ) ) ) ) + ( C - B ) ) = ( 2 x. ( C + A ) ) ) |
| 102 | 26 59 101 | 3eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) = ( 2 x. ( C + A ) ) ) |
| 103 | 102 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) = ( ( 2 x. ( C + A ) ) / ( 2 x. 2 ) ) ) |
| 104 | addcl | |- ( ( C e. CC /\ A e. CC ) -> ( C + A ) e. CC ) |
|
| 105 | 3 69 104 | syl2anr | |- ( ( A e. NN /\ C e. NN ) -> ( C + A ) e. CC ) |
| 106 | 105 | 3adant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + A ) e. CC ) |
| 107 | 106 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + A ) e. CC ) |
| 108 | mulcl | |- ( ( 2 e. CC /\ ( C + A ) e. CC ) -> ( 2 x. ( C + A ) ) e. CC ) |
|
| 109 | 15 107 108 | sylancr | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( C + A ) ) e. CC ) |
| 110 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 111 | divdiv1 | |- ( ( ( 2 x. ( C + A ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 2 x. ( C + A ) ) / 2 ) / 2 ) = ( ( 2 x. ( C + A ) ) / ( 2 x. 2 ) ) ) |
|
| 112 | 110 110 111 | mp3an23 | |- ( ( 2 x. ( C + A ) ) e. CC -> ( ( ( 2 x. ( C + A ) ) / 2 ) / 2 ) = ( ( 2 x. ( C + A ) ) / ( 2 x. 2 ) ) ) |
| 113 | 109 112 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( 2 x. ( C + A ) ) / 2 ) / 2 ) = ( ( 2 x. ( C + A ) ) / ( 2 x. 2 ) ) ) |
| 114 | 103 113 | eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ^ 2 ) / ( 2 x. 2 ) ) = ( ( ( 2 x. ( C + A ) ) / 2 ) / 2 ) ) |
| 115 | divcan3 | |- ( ( ( C + A ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( C + A ) ) / 2 ) = ( C + A ) ) |
|
| 116 | 15 16 115 | mp3an23 | |- ( ( C + A ) e. CC -> ( ( 2 x. ( C + A ) ) / 2 ) = ( C + A ) ) |
| 117 | 107 116 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. ( C + A ) ) / 2 ) = ( C + A ) ) |
| 118 | 117 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( 2 x. ( C + A ) ) / 2 ) / 2 ) = ( ( C + A ) / 2 ) ) |
| 119 | 22 114 118 | 3eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ^ 2 ) = ( ( C + A ) / 2 ) ) |
| 120 | 2 119 | eqtrid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( M ^ 2 ) = ( ( C + A ) / 2 ) ) |