This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opoe | |- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ -. 2 || B ) ) -> 2 || ( A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 | |- ( A e. ZZ -> ( -. 2 || A <-> E. a e. ZZ ( ( 2 x. a ) + 1 ) = A ) ) |
|
| 2 | odd2np1 | |- ( B e. ZZ -> ( -. 2 || B <-> E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) |
|
| 3 | 1 2 | bi2anan9 | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ -. 2 || B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) ) |
| 4 | reeanv | |- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) |
|
| 5 | 2z | |- 2 e. ZZ |
|
| 6 | zaddcl | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( a + b ) e. ZZ ) |
|
| 7 | 6 | peano2zd | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( a + b ) + 1 ) e. ZZ ) |
| 8 | dvdsmul1 | |- ( ( 2 e. ZZ /\ ( ( a + b ) + 1 ) e. ZZ ) -> 2 || ( 2 x. ( ( a + b ) + 1 ) ) ) |
|
| 9 | 5 7 8 | sylancr | |- ( ( a e. ZZ /\ b e. ZZ ) -> 2 || ( 2 x. ( ( a + b ) + 1 ) ) ) |
| 10 | zcn | |- ( a e. ZZ -> a e. CC ) |
|
| 11 | zcn | |- ( b e. ZZ -> b e. CC ) |
|
| 12 | addcl | |- ( ( a e. CC /\ b e. CC ) -> ( a + b ) e. CC ) |
|
| 13 | 2cn | |- 2 e. CC |
|
| 14 | ax-1cn | |- 1 e. CC |
|
| 15 | adddi | |- ( ( 2 e. CC /\ ( a + b ) e. CC /\ 1 e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( 2 x. ( a + b ) ) + ( 2 x. 1 ) ) ) |
|
| 16 | 13 14 15 | mp3an13 | |- ( ( a + b ) e. CC -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( 2 x. ( a + b ) ) + ( 2 x. 1 ) ) ) |
| 17 | 12 16 | syl | |- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( 2 x. ( a + b ) ) + ( 2 x. 1 ) ) ) |
| 18 | adddi | |- ( ( 2 e. CC /\ a e. CC /\ b e. CC ) -> ( 2 x. ( a + b ) ) = ( ( 2 x. a ) + ( 2 x. b ) ) ) |
|
| 19 | 13 18 | mp3an1 | |- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( a + b ) ) = ( ( 2 x. a ) + ( 2 x. b ) ) ) |
| 20 | 19 | oveq1d | |- ( ( a e. CC /\ b e. CC ) -> ( ( 2 x. ( a + b ) ) + ( 2 x. 1 ) ) = ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 2 x. 1 ) ) ) |
| 21 | 17 20 | eqtrd | |- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 2 x. 1 ) ) ) |
| 22 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 23 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 24 | 22 23 | eqtri | |- ( 2 x. 1 ) = ( 1 + 1 ) |
| 25 | 24 | oveq2i | |- ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 2 x. 1 ) ) = ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) |
| 26 | 21 25 | eqtrdi | |- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) ) |
| 27 | mulcl | |- ( ( 2 e. CC /\ a e. CC ) -> ( 2 x. a ) e. CC ) |
|
| 28 | 13 27 | mpan | |- ( a e. CC -> ( 2 x. a ) e. CC ) |
| 29 | mulcl | |- ( ( 2 e. CC /\ b e. CC ) -> ( 2 x. b ) e. CC ) |
|
| 30 | 13 29 | mpan | |- ( b e. CC -> ( 2 x. b ) e. CC ) |
| 31 | add4 | |- ( ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC ) /\ ( 1 e. CC /\ 1 e. CC ) ) -> ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) |
|
| 32 | 14 14 31 | mpanr12 | |- ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC ) -> ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) |
| 33 | 28 30 32 | syl2an | |- ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + ( 2 x. b ) ) + ( 1 + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) |
| 34 | 26 33 | eqtrd | |- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) |
| 35 | 10 11 34 | syl2an | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( 2 x. ( ( a + b ) + 1 ) ) = ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) |
| 36 | 9 35 | breqtrd | |- ( ( a e. ZZ /\ b e. ZZ ) -> 2 || ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) ) |
| 37 | oveq12 | |- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) = ( A + B ) ) |
|
| 38 | 37 | breq2d | |- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> ( 2 || ( ( ( 2 x. a ) + 1 ) + ( ( 2 x. b ) + 1 ) ) <-> 2 || ( A + B ) ) ) |
| 39 | 36 38 | syl5ibcom | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A + B ) ) ) |
| 40 | 39 | rexlimivv | |- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A + B ) ) |
| 41 | 4 40 | sylbir | |- ( ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A + B ) ) |
| 42 | 3 41 | biimtrdi | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ -. 2 || B ) -> 2 || ( A + B ) ) ) |
| 43 | 42 | imp | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( -. 2 || A /\ -. 2 || B ) ) -> 2 || ( A + B ) ) |
| 44 | 43 | an4s | |- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ -. 2 || B ) ) -> 2 || ( A + B ) ) |