This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exhibit the converse function of the map G which joins two product topologies on disjoint index sets. (Contributed by Mario Carneiro, 8-Feb-2015) (Proof shortened by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptunhmeo.x | |- X = U. K |
|
| ptunhmeo.y | |- Y = U. L |
||
| ptunhmeo.j | |- J = ( Xt_ ` F ) |
||
| ptunhmeo.k | |- K = ( Xt_ ` ( F |` A ) ) |
||
| ptunhmeo.l | |- L = ( Xt_ ` ( F |` B ) ) |
||
| ptunhmeo.g | |- G = ( x e. X , y e. Y |-> ( x u. y ) ) |
||
| ptunhmeo.c | |- ( ph -> C e. V ) |
||
| ptunhmeo.f | |- ( ph -> F : C --> Top ) |
||
| ptunhmeo.u | |- ( ph -> C = ( A u. B ) ) |
||
| ptunhmeo.i | |- ( ph -> ( A i^i B ) = (/) ) |
||
| Assertion | ptuncnv | |- ( ph -> `' G = ( z e. U. J |-> <. ( z |` A ) , ( z |` B ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptunhmeo.x | |- X = U. K |
|
| 2 | ptunhmeo.y | |- Y = U. L |
|
| 3 | ptunhmeo.j | |- J = ( Xt_ ` F ) |
|
| 4 | ptunhmeo.k | |- K = ( Xt_ ` ( F |` A ) ) |
|
| 5 | ptunhmeo.l | |- L = ( Xt_ ` ( F |` B ) ) |
|
| 6 | ptunhmeo.g | |- G = ( x e. X , y e. Y |-> ( x u. y ) ) |
|
| 7 | ptunhmeo.c | |- ( ph -> C e. V ) |
|
| 8 | ptunhmeo.f | |- ( ph -> F : C --> Top ) |
|
| 9 | ptunhmeo.u | |- ( ph -> C = ( A u. B ) ) |
|
| 10 | ptunhmeo.i | |- ( ph -> ( A i^i B ) = (/) ) |
|
| 11 | vex | |- x e. _V |
|
| 12 | vex | |- y e. _V |
|
| 13 | 11 12 | op1std | |- ( w = <. x , y >. -> ( 1st ` w ) = x ) |
| 14 | 11 12 | op2ndd | |- ( w = <. x , y >. -> ( 2nd ` w ) = y ) |
| 15 | 13 14 | uneq12d | |- ( w = <. x , y >. -> ( ( 1st ` w ) u. ( 2nd ` w ) ) = ( x u. y ) ) |
| 16 | 15 | mpompt | |- ( w e. ( X X. Y ) |-> ( ( 1st ` w ) u. ( 2nd ` w ) ) ) = ( x e. X , y e. Y |-> ( x u. y ) ) |
| 17 | 6 16 | eqtr4i | |- G = ( w e. ( X X. Y ) |-> ( ( 1st ` w ) u. ( 2nd ` w ) ) ) |
| 18 | xp1st | |- ( w e. ( X X. Y ) -> ( 1st ` w ) e. X ) |
|
| 19 | 18 | adantl | |- ( ( ph /\ w e. ( X X. Y ) ) -> ( 1st ` w ) e. X ) |
| 20 | ixpeq2 | |- ( A. k e. A U. ( ( F |` A ) ` k ) = U. ( F ` k ) -> X_ k e. A U. ( ( F |` A ) ` k ) = X_ k e. A U. ( F ` k ) ) |
|
| 21 | fvres | |- ( k e. A -> ( ( F |` A ) ` k ) = ( F ` k ) ) |
|
| 22 | 21 | unieqd | |- ( k e. A -> U. ( ( F |` A ) ` k ) = U. ( F ` k ) ) |
| 23 | 20 22 | mprg | |- X_ k e. A U. ( ( F |` A ) ` k ) = X_ k e. A U. ( F ` k ) |
| 24 | ssun1 | |- A C_ ( A u. B ) |
|
| 25 | 24 9 | sseqtrrid | |- ( ph -> A C_ C ) |
| 26 | 7 25 | ssexd | |- ( ph -> A e. _V ) |
| 27 | 8 25 | fssresd | |- ( ph -> ( F |` A ) : A --> Top ) |
| 28 | 4 | ptuni | |- ( ( A e. _V /\ ( F |` A ) : A --> Top ) -> X_ k e. A U. ( ( F |` A ) ` k ) = U. K ) |
| 29 | 26 27 28 | syl2anc | |- ( ph -> X_ k e. A U. ( ( F |` A ) ` k ) = U. K ) |
| 30 | 23 29 | eqtr3id | |- ( ph -> X_ k e. A U. ( F ` k ) = U. K ) |
| 31 | 30 1 | eqtr4di | |- ( ph -> X_ k e. A U. ( F ` k ) = X ) |
| 32 | 31 | adantr | |- ( ( ph /\ w e. ( X X. Y ) ) -> X_ k e. A U. ( F ` k ) = X ) |
| 33 | 19 32 | eleqtrrd | |- ( ( ph /\ w e. ( X X. Y ) ) -> ( 1st ` w ) e. X_ k e. A U. ( F ` k ) ) |
| 34 | xp2nd | |- ( w e. ( X X. Y ) -> ( 2nd ` w ) e. Y ) |
|
| 35 | 34 | adantl | |- ( ( ph /\ w e. ( X X. Y ) ) -> ( 2nd ` w ) e. Y ) |
| 36 | 9 | eqcomd | |- ( ph -> ( A u. B ) = C ) |
| 37 | uneqdifeq | |- ( ( A C_ C /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) = C <-> ( C \ A ) = B ) ) |
|
| 38 | 25 10 37 | syl2anc | |- ( ph -> ( ( A u. B ) = C <-> ( C \ A ) = B ) ) |
| 39 | 36 38 | mpbid | |- ( ph -> ( C \ A ) = B ) |
| 40 | 39 | ixpeq1d | |- ( ph -> X_ k e. ( C \ A ) U. ( F ` k ) = X_ k e. B U. ( F ` k ) ) |
| 41 | ixpeq2 | |- ( A. k e. B U. ( ( F |` B ) ` k ) = U. ( F ` k ) -> X_ k e. B U. ( ( F |` B ) ` k ) = X_ k e. B U. ( F ` k ) ) |
|
| 42 | fvres | |- ( k e. B -> ( ( F |` B ) ` k ) = ( F ` k ) ) |
|
| 43 | 42 | unieqd | |- ( k e. B -> U. ( ( F |` B ) ` k ) = U. ( F ` k ) ) |
| 44 | 41 43 | mprg | |- X_ k e. B U. ( ( F |` B ) ` k ) = X_ k e. B U. ( F ` k ) |
| 45 | ssun2 | |- B C_ ( A u. B ) |
|
| 46 | 45 9 | sseqtrrid | |- ( ph -> B C_ C ) |
| 47 | 7 46 | ssexd | |- ( ph -> B e. _V ) |
| 48 | 8 46 | fssresd | |- ( ph -> ( F |` B ) : B --> Top ) |
| 49 | 5 | ptuni | |- ( ( B e. _V /\ ( F |` B ) : B --> Top ) -> X_ k e. B U. ( ( F |` B ) ` k ) = U. L ) |
| 50 | 47 48 49 | syl2anc | |- ( ph -> X_ k e. B U. ( ( F |` B ) ` k ) = U. L ) |
| 51 | 44 50 | eqtr3id | |- ( ph -> X_ k e. B U. ( F ` k ) = U. L ) |
| 52 | 51 2 | eqtr4di | |- ( ph -> X_ k e. B U. ( F ` k ) = Y ) |
| 53 | 40 52 | eqtrd | |- ( ph -> X_ k e. ( C \ A ) U. ( F ` k ) = Y ) |
| 54 | 53 | adantr | |- ( ( ph /\ w e. ( X X. Y ) ) -> X_ k e. ( C \ A ) U. ( F ` k ) = Y ) |
| 55 | 35 54 | eleqtrrd | |- ( ( ph /\ w e. ( X X. Y ) ) -> ( 2nd ` w ) e. X_ k e. ( C \ A ) U. ( F ` k ) ) |
| 56 | 25 | adantr | |- ( ( ph /\ w e. ( X X. Y ) ) -> A C_ C ) |
| 57 | undifixp | |- ( ( ( 1st ` w ) e. X_ k e. A U. ( F ` k ) /\ ( 2nd ` w ) e. X_ k e. ( C \ A ) U. ( F ` k ) /\ A C_ C ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. X_ k e. C U. ( F ` k ) ) |
|
| 58 | 33 55 56 57 | syl3anc | |- ( ( ph /\ w e. ( X X. Y ) ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. X_ k e. C U. ( F ` k ) ) |
| 59 | 3 | ptuni | |- ( ( C e. V /\ F : C --> Top ) -> X_ k e. C U. ( F ` k ) = U. J ) |
| 60 | 7 8 59 | syl2anc | |- ( ph -> X_ k e. C U. ( F ` k ) = U. J ) |
| 61 | 60 | adantr | |- ( ( ph /\ w e. ( X X. Y ) ) -> X_ k e. C U. ( F ` k ) = U. J ) |
| 62 | 58 61 | eleqtrd | |- ( ( ph /\ w e. ( X X. Y ) ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. U. J ) |
| 63 | 25 | adantr | |- ( ( ph /\ z e. U. J ) -> A C_ C ) |
| 64 | 60 | eleq2d | |- ( ph -> ( z e. X_ k e. C U. ( F ` k ) <-> z e. U. J ) ) |
| 65 | 64 | biimpar | |- ( ( ph /\ z e. U. J ) -> z e. X_ k e. C U. ( F ` k ) ) |
| 66 | resixp | |- ( ( A C_ C /\ z e. X_ k e. C U. ( F ` k ) ) -> ( z |` A ) e. X_ k e. A U. ( F ` k ) ) |
|
| 67 | 63 65 66 | syl2anc | |- ( ( ph /\ z e. U. J ) -> ( z |` A ) e. X_ k e. A U. ( F ` k ) ) |
| 68 | 31 | adantr | |- ( ( ph /\ z e. U. J ) -> X_ k e. A U. ( F ` k ) = X ) |
| 69 | 67 68 | eleqtrd | |- ( ( ph /\ z e. U. J ) -> ( z |` A ) e. X ) |
| 70 | 46 | adantr | |- ( ( ph /\ z e. U. J ) -> B C_ C ) |
| 71 | resixp | |- ( ( B C_ C /\ z e. X_ k e. C U. ( F ` k ) ) -> ( z |` B ) e. X_ k e. B U. ( F ` k ) ) |
|
| 72 | 70 65 71 | syl2anc | |- ( ( ph /\ z e. U. J ) -> ( z |` B ) e. X_ k e. B U. ( F ` k ) ) |
| 73 | 52 | adantr | |- ( ( ph /\ z e. U. J ) -> X_ k e. B U. ( F ` k ) = Y ) |
| 74 | 72 73 | eleqtrd | |- ( ( ph /\ z e. U. J ) -> ( z |` B ) e. Y ) |
| 75 | 69 74 | opelxpd | |- ( ( ph /\ z e. U. J ) -> <. ( z |` A ) , ( z |` B ) >. e. ( X X. Y ) ) |
| 76 | eqop | |- ( w e. ( X X. Y ) -> ( w = <. ( z |` A ) , ( z |` B ) >. <-> ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) ) ) |
|
| 77 | 76 | ad2antrl | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( w = <. ( z |` A ) , ( z |` B ) >. <-> ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) ) ) |
| 78 | 65 | adantrl | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> z e. X_ k e. C U. ( F ` k ) ) |
| 79 | ixpfn | |- ( z e. X_ k e. C U. ( F ` k ) -> z Fn C ) |
|
| 80 | fnresdm | |- ( z Fn C -> ( z |` C ) = z ) |
|
| 81 | 78 79 80 | 3syl | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( z |` C ) = z ) |
| 82 | 9 | reseq2d | |- ( ph -> ( z |` C ) = ( z |` ( A u. B ) ) ) |
| 83 | 82 | adantr | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( z |` C ) = ( z |` ( A u. B ) ) ) |
| 84 | 81 83 | eqtr3d | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> z = ( z |` ( A u. B ) ) ) |
| 85 | resundi | |- ( z |` ( A u. B ) ) = ( ( z |` A ) u. ( z |` B ) ) |
|
| 86 | 84 85 | eqtrdi | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> z = ( ( z |` A ) u. ( z |` B ) ) ) |
| 87 | uneq12 | |- ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) = ( ( z |` A ) u. ( z |` B ) ) ) |
|
| 88 | 87 | eqeq2d | |- ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) -> ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) <-> z = ( ( z |` A ) u. ( z |` B ) ) ) ) |
| 89 | 86 88 | syl5ibrcom | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) -> z = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
| 90 | ixpfn | |- ( ( 1st ` w ) e. X_ k e. A U. ( F ` k ) -> ( 1st ` w ) Fn A ) |
|
| 91 | 33 90 | syl | |- ( ( ph /\ w e. ( X X. Y ) ) -> ( 1st ` w ) Fn A ) |
| 92 | 91 | adantrr | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 1st ` w ) Fn A ) |
| 93 | dffn2 | |- ( ( 1st ` w ) Fn A <-> ( 1st ` w ) : A --> _V ) |
|
| 94 | 92 93 | sylib | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 1st ` w ) : A --> _V ) |
| 95 | 52 | adantr | |- ( ( ph /\ w e. ( X X. Y ) ) -> X_ k e. B U. ( F ` k ) = Y ) |
| 96 | 35 95 | eleqtrrd | |- ( ( ph /\ w e. ( X X. Y ) ) -> ( 2nd ` w ) e. X_ k e. B U. ( F ` k ) ) |
| 97 | ixpfn | |- ( ( 2nd ` w ) e. X_ k e. B U. ( F ` k ) -> ( 2nd ` w ) Fn B ) |
|
| 98 | 96 97 | syl | |- ( ( ph /\ w e. ( X X. Y ) ) -> ( 2nd ` w ) Fn B ) |
| 99 | 98 | adantrr | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 2nd ` w ) Fn B ) |
| 100 | dffn2 | |- ( ( 2nd ` w ) Fn B <-> ( 2nd ` w ) : B --> _V ) |
|
| 101 | 99 100 | sylib | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 2nd ` w ) : B --> _V ) |
| 102 | res0 | |- ( ( 1st ` w ) |` (/) ) = (/) |
|
| 103 | res0 | |- ( ( 2nd ` w ) |` (/) ) = (/) |
|
| 104 | 102 103 | eqtr4i | |- ( ( 1st ` w ) |` (/) ) = ( ( 2nd ` w ) |` (/) ) |
| 105 | 10 | adantr | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( A i^i B ) = (/) ) |
| 106 | 105 | reseq2d | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( 1st ` w ) |` ( A i^i B ) ) = ( ( 1st ` w ) |` (/) ) ) |
| 107 | 105 | reseq2d | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( 2nd ` w ) |` ( A i^i B ) ) = ( ( 2nd ` w ) |` (/) ) ) |
| 108 | 104 106 107 | 3eqtr4a | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( 1st ` w ) |` ( A i^i B ) ) = ( ( 2nd ` w ) |` ( A i^i B ) ) ) |
| 109 | fresaunres1 | |- ( ( ( 1st ` w ) : A --> _V /\ ( 2nd ` w ) : B --> _V /\ ( ( 1st ` w ) |` ( A i^i B ) ) = ( ( 2nd ` w ) |` ( A i^i B ) ) ) -> ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) = ( 1st ` w ) ) |
|
| 110 | 94 101 108 109 | syl3anc | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) = ( 1st ` w ) ) |
| 111 | 110 | eqcomd | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 1st ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) ) |
| 112 | fresaunres2 | |- ( ( ( 1st ` w ) : A --> _V /\ ( 2nd ` w ) : B --> _V /\ ( ( 1st ` w ) |` ( A i^i B ) ) = ( ( 2nd ` w ) |` ( A i^i B ) ) ) -> ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) = ( 2nd ` w ) ) |
|
| 113 | 94 101 108 112 | syl3anc | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) = ( 2nd ` w ) ) |
| 114 | 113 | eqcomd | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 2nd ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) |
| 115 | 111 114 | jca | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( 1st ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) /\ ( 2nd ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) ) |
| 116 | reseq1 | |- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( z |` A ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) ) |
|
| 117 | 116 | eqeq2d | |- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( ( 1st ` w ) = ( z |` A ) <-> ( 1st ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) ) ) |
| 118 | reseq1 | |- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( z |` B ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) |
|
| 119 | 118 | eqeq2d | |- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( ( 2nd ` w ) = ( z |` B ) <-> ( 2nd ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) ) |
| 120 | 117 119 | anbi12d | |- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) <-> ( ( 1st ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) /\ ( 2nd ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) ) ) |
| 121 | 115 120 | syl5ibrcom | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) ) ) |
| 122 | 89 121 | impbid | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) <-> z = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
| 123 | 77 122 | bitrd | |- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( w = <. ( z |` A ) , ( z |` B ) >. <-> z = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
| 124 | 17 62 75 123 | f1ocnv2d | |- ( ph -> ( G : ( X X. Y ) -1-1-onto-> U. J /\ `' G = ( z e. U. J |-> <. ( z |` A ) , ( z |` B ) >. ) ) ) |
| 125 | 124 | simprd | |- ( ph -> `' G = ( z e. U. J |-> <. ( z |` A ) , ( z |` B ) >. ) ) |