This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt21.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| cnmpt21.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
||
| Assertion | cnmpt1st | |- ( ph -> ( x e. X , y e. Y |-> x ) e. ( ( J tX K ) Cn J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 2 | cnmpt21.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
| 3 | fo1st | |- 1st : _V -onto-> _V |
|
| 4 | fofn | |- ( 1st : _V -onto-> _V -> 1st Fn _V ) |
|
| 5 | 3 4 | ax-mp | |- 1st Fn _V |
| 6 | ssv | |- ( X X. Y ) C_ _V |
|
| 7 | fnssres | |- ( ( 1st Fn _V /\ ( X X. Y ) C_ _V ) -> ( 1st |` ( X X. Y ) ) Fn ( X X. Y ) ) |
|
| 8 | 5 6 7 | mp2an | |- ( 1st |` ( X X. Y ) ) Fn ( X X. Y ) |
| 9 | dffn5 | |- ( ( 1st |` ( X X. Y ) ) Fn ( X X. Y ) <-> ( 1st |` ( X X. Y ) ) = ( z e. ( X X. Y ) |-> ( ( 1st |` ( X X. Y ) ) ` z ) ) ) |
|
| 10 | 8 9 | mpbi | |- ( 1st |` ( X X. Y ) ) = ( z e. ( X X. Y ) |-> ( ( 1st |` ( X X. Y ) ) ` z ) ) |
| 11 | fvres | |- ( z e. ( X X. Y ) -> ( ( 1st |` ( X X. Y ) ) ` z ) = ( 1st ` z ) ) |
|
| 12 | 11 | mpteq2ia | |- ( z e. ( X X. Y ) |-> ( ( 1st |` ( X X. Y ) ) ` z ) ) = ( z e. ( X X. Y ) |-> ( 1st ` z ) ) |
| 13 | vex | |- x e. _V |
|
| 14 | vex | |- y e. _V |
|
| 15 | 13 14 | op1std | |- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
| 16 | 15 | mpompt | |- ( z e. ( X X. Y ) |-> ( 1st ` z ) ) = ( x e. X , y e. Y |-> x ) |
| 17 | 10 12 16 | 3eqtri | |- ( 1st |` ( X X. Y ) ) = ( x e. X , y e. Y |-> x ) |
| 18 | tx1cn | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( 1st |` ( X X. Y ) ) e. ( ( J tX K ) Cn J ) ) |
|
| 19 | 1 2 18 | syl2anc | |- ( ph -> ( 1st |` ( X X. Y ) ) e. ( ( J tX K ) Cn J ) ) |
| 20 | 17 19 | eqeltrrid | |- ( ph -> ( x e. X , y e. Y |-> x ) e. ( ( J tX K ) Cn J ) ) |